
Eberhard Karls Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät

Wilhelm-Schickard-Institut für Informatik

Masterarbeit Informatik

Biologically Inspired Action Inference with
Recurrent Spiking Forward Models

Manuel Traub

11. November 2019

Erstgutachter

Prof. Dr. Martin Butz
Kognitive Modellierung

Wilhelm-Schickard-Institut für Informatik
Universität Tübingen

Zweitgutachter

Prof. Dr. Harald Baayen
Quantitative Linguistik

Seminar für Sprachwissenschaft
Universität Tübingen

Betreuer

Dr. Sebastian Otte
Kognitive Modellierung

Wilhelm-Schickard-Institut für Informatik
Universität Tübingen

Traub, Manuel:
Biologically Inspired Action Inference with Recurrent Spiking Forward Models
Masterarbeit Informatik
Eberhard Karls Universität Tübingen
Bearbeitungszeitraum: 15.05.2019 – 15.11.2019

Abstract
Artificial Intelligence (AI) has progressed to a point where intelligent systems al-
ready outperform humans on several different tasks, ranging from object recognition
to complex board and video games. Still, we are only beginning to understand how
learning in the mammalian brain works. Specifically how the brain solves the Tem-
poral Credit Assignment problem, is poorly understood and probably significantly
differs from Back-Propagation Through Time (BPTT), which is the standard way
Recurrent Neural Networks (RNNs) are trained. Currently high performing RNNs
like Long Short-Term Memories (LSTMs) are also a rough simplification of real
Neural Networks. A more biologically plausible approximation can be achieved by
Spiking Neural Networks (SNNs), which constitute the next generation of Artificial
Neural Networks (ANNs). This thesis explores the application of a novel training
algorithms called e-pop that is inspired by synaptic eligibility traces, which rep-
resent the accumulation of local information in the brain. Together with BPTT,
a new SNN architecture, called Long Short-Term SNN (LSNN) that for the first
time reaches the performance of LSTMs, is challenged with the task of controlling
a many-joint robotic arm through the application of action inference by learning
an appropriate forward model of the robotic arm dynamics.

iii

Kurzfassung
Künstliche Intelligenz hat bereits begonnen den Menschen in verschiedenen Be-
reichen zu übertreffen, von Objekterkennung über Brettspiele bis hin zu Compu-
terspielen. Trotz dieser Fortschritte sind die Mechanismen des Lernens im Säuge-
tiergehirn weiterhin ein aktives Forschungsfeld. Probleme wie die Zuweisung von
Fehlerinformationen über lange Zeitspannen hinweg sind erst ansatzweise verstan-
den und unterscheiden sich vermutlich stark von den Trainingsmethoden künstli-
cher Rekurrenter Neuronaler Netze (RNNs) wie Back-Propagation Through Time
(BPTT). Zudem sind verwendete RNNs wie Long Short-Term-Memorys (LSTMs)
eine starke Vereinfachung biologischer Neuronaler Netze. Biologisch plausibler hin-
gegen ist die neuste Generation Neuronaler Netze, sogenannte Gepulste Neuronale
Netzte (SNNs), welche Gegenstand dieser Arbeit sind. Benutzt wird eine neuartige
SNN-Architektur namens Long Short-Term SNN (LSNN), welche als erste SNN-
Architektur in der Lage waren die Performance von LSTMs zu erreichen. Trainiert
werden diese LSNNs mithilfe von BPTT so wie einem neuen Lern-Algorithmus na-
mens e-prop, dessen Arbeitsweise von synaptischen Eligibility-Tracen abgeleitet ist.
Diese Eligibility-Traces, welche eine lokale Akkumulation von Information über die
vergangene Aktivität einer Synapse modellieren, bilden die Basis einer biologisch
plausibleren Alternative zu BPTT. Untersucht wird, ob LSNNs mithilfe von BPTT
und e-prop in der Lage sind einen mehrgelenkigen Roboter-Arm zu steuern. Er-
reicht wird dies durch das Erlernen eines Vorwärtsmodelles, welches die Dynamik
des Roboters vorhersagt und dann mittels des inversen Modells die Motorbefehle
berechnet.

v

Contents

1 Introduction 1
2 Foundations 7

2.1 Network Model . 7
2.2 Back-Propagation Through Time 9

2.2.1 Error Gradients for LIF Neurons 10
2.2.2 Error Gradients for ALIF Neurons 11
2.2.3 Error Gradients for Output Synapses 13
2.2.4 Error Gradients for Network Inputs 13

2.3 E-Prop . 13
2.3.1 Eligibility Traces for LIF Neurons 15
2.3.2 Eligibility Traces for ALIF Neurons 16
2.3.3 E-Prop 1: Learning Signals through Random Feedback Con-

nections . 17
2.3.4 Error Gradients for Network Inputs 18
2.3.5 E-Prop 2 based Input Errors 19

3 Emergence of STDP in E-Prop based Gradients 21
3.1 Izhikevich Neuron . 21
3.2 STDP-LIF Neuron . 26

4 Predictive Forward Model 29
4.1 Methods . 30

4.1.1 Implementation . 30
4.1.2 Input Encoding . 33
4.1.3 Training . 33

4.2 Results . 35
4.2.1 Training . 35
4.2.2 Input Encoding . 37
4.2.3 Accuracy . 38
4.2.4 Realistic Simulation . 40

5 Inference 43
5.1 Methods . 43

5.1.1 Back-Propagation Through Time 43
5.1.2 Biologically Plausible Inference 45

vi

Contents

5.1.3 Direct Inverse Model . 46
5.2 Results . 47

5.2.1 BPTT based Inference . 48
5.2.2 E-Prop based Inference . 57
5.2.3 Direct Inverse Model . 59

6 Robot 61
7 Conclusion and Future Work 67
Abbreviations 71
Bibliography 73

vii

Chapter 1

Introduction

In recent years, Artificial Intelligence (AI) has started to surpass humans on a
variety of different tasks, from image recognition over video games to complex
board games like Go (Krizhevsky et al., 2012; Mnih et al., 2013; Silver et al., 2016).
These machine learning algorithms are inspired by biological neurons that enable
the learning and processing of information in the mammalian brain.

Artificial neurons, which are the basis of current high performing Artificial Neural
Networks (ANNs), approximate the behavior of a biological neuron by computing an
activation function over a weighted sum of inputs. Even particular ANN structures
are often inspired by structures found in the mammalian brain. Convolutional
Neuronal Networks (CNNs) for example are loosely based on the visual cortex and
employ several convolutional layers that learn increasingly complex visual features
by mimicking the primate brains visual hierarchy (Cichy et al., 2016).

While sophisticated reinforcement architectures for playing video games heav-
ily relay on the interpretation of visual inputs through the use of CNNs, they are
in essence feed forward networks that employ no recurrent connections between
neurons (Mnih et al., 2013). The human brain on the other hand is a highly re-
current neural network, capable of memorizing and processing past informations
(Kar et al., 2019; Kietzmann et al., 2019). Recurrent ANNs like Long Short-Term
Memory (LSTM) try to recreate such capabilities by recurrently connecting neu-
rons within their networks. LSTMs for example use a gated recurrently connected
memory cell that can hold information over extended periods of time (Hochre-
iter and Schmidhuber, 1997). This specialized architecture enables them to tackle
challenging tasks like speech recognition, polyphonic music generation or recently
mastering the professional e-sports game StarCraft II (Xiong et al., 2018; Zhao
et al., 2018; Vinyals et al., 2019).

While ANNs are in principle inspired by the workings of the brain, artificial neu-
rons with a nonlinear activation function are a rough simplification of real neurons.
In the brain, neurons do not produce real value outputs, instead they fire a so-called
spike and thus effectively produce binary outputs. As shown in Figure 1.1, neurons
collect incoming excitatory and inhibitory post synaptic potential (EPSP/IPSP)
from presynaptic neurons. Once their internal action potential reaches a certain
threshold, they produce a spike, which is then transmitted as EPSP or IPSP de-

1

Chapter 1 Introduction

Figure 1.1: Left: Presynaptic neurons spike and generate EPSP or IPSP depending on
the synaptic weight. Right: Internal action potential of a neuron which increases through
incoming EPSP until it reaches the neurons firing threshold. After the neuron spiked,
it enters a refractory period where its action potential is reset. Figure adapted from
Paugam-Moisy and Bohte (2012).

pending on the synaptic weight to post synaptic neurons. After a neuron has fired
a spike, its action potential is reset and the neuron enters a refractory period in
which it can not spike again. Classical Artificial neurons, also often called the sec-
ond generation of ANNS, approximate the computation of biological neurons by
assuming that neurons carry out computation by means of different firing rates.
The real value in- and outputs to and from artificial neurons are an approximation
of these firing rates. Since biological neurons also use the precise timing of indi-
vidual spikes, this assumption does not hold (Maass, 1997). In order to improve
the biological plausibility and accuracy, recently the third generation of neural net-
works, Spiking Neural Networks (SNN), has come into focus (Paugam-Moisy and
Bohte, 2012). The difference to the second generation of ANNs is that instead of
using real values as in- and outputs, neurons of the third generation only produce
binary outputs, where a one is called a spike. The internal state of a spiking neuron
includes an action potential, where the neuron integrates over weighted incoming
spikes. Once this action potential reaches a certain threshold, the neuron itself
produces a spike and its action potential is reset. After a spike, the neuron usually
enters a refractory period in which it can not spike again.

One of the key advantages of SNNs over their second generation counterparts,
is that they can be employed highly energy-efficiently in so-called neuromorphic
hardware (Li et al., 2018; Prodromakis and Toumazou, 2010; Liu and Delbruck,
2010). Neuromorphic chips like TrueNorth from IBM, that embodies a SNN of
about 1 million neurons and 256 million synapses, have already been used to decode
EEG signals, or driving a robot (Hwu et al., 2017; Akopyan et al., 2015; Nurse et al.,
2016).

While all spiking neurons try to model biological neurons more accurately than
their second generation counterparts, there is a wide variety of different neuron
types ranging in complexity and biological accuracy.

The Hodgkin-Huxley model is a very precise biophysically realistic model of

2

a biological neuron, which models a neuron’s membrane potential based on four
coupled differential equations (Rinzel, 1990; Borges et al., 2016). These equations
account for sodium and potassium ion channels within a neuron’s cell membrane
that make up the membranes input and output current. From a computational
perspective, simulating the Hodgkin-Huxley model takes a long time, since for each
neuron several equations have to be solved. Also because numerical errors add up
over time, a small step size has to be used during the simulation (Long and Fang,
2010).

Like the Hodgkin-Huxley model, the Izhikevich neuron is a precise model of
a biological neuron, but uses a simplified set of two parameterizable differential
equations. It simplifies the sodium and potassium ion channels into a general input
current and uses a membrane recovery variable in order to model the neuron’s
refractory period. By using parameterizable equations, the Izhikevich neuron can
simulate a variety of different neuron types from the mammalian brain (Izhikevich,
2003). Also since the model has an internal reset after each spike, numerical errors
only add up from one spike to another and thus a significant greater step size than
with Hodgkin-Huxley neurons can be used in a simulation.

The Leaky Integrate and Fire neuron (LIF) is a simple and computational cheap
model of a biological neuron, but still capable of simulating the essential features
of neural processing (Burkitt, 2006). LIF neurons are described by a single equa-
tion that is simple enough to make it mathematically analyzable. Also instead of
using a differential equation, LIF neurons can be modelled directly in discrete time
steps, which makes them especially suitable for computer simulations (Bellec et al.,
2019a).

Training of ANNs can be efficiently done with some variant of Gradient De-
scent and back-propagation or back-propagation through time for recurrent ANNs
(Werbos et al., 1990). For SNNs on the other hand, there exists no such universal
training algorithm. Back-propagation requires a differential activation function,
which is not possible with a non-continuous spiking function. So, in order to train
SNNs, there exists a variety of different training algorithms. One of which is Spike-
Timing-Dependent Plasticity (STDP), a learning rule based on the order of pre
and post synaptic spikes. It has been demonstrated that STDP is one of the mech-
anisms for strengthening and weakening of synaptic connections between neurons
in various species (Caporale and Dan, 2008). It is also known that this hebbian
learning rule is at play in the visual cortex of primates (Huang et al., 2014). Kher-
adpisheh et al. (2018); Mozafari et al. (2018, 2019) demonstrated that a simple
STDP based learning rule enables Deep Convolutional Spiking Neural Networks to
learn visual features and produce high accuracies for image classification tasks like
MNIST and ETH-80.

Another biologically inspired training method is to use optimization strategies in-
spired by natural evolution called Evolutionary Algorithms (EA) (Tomassini, 1999;
Kern et al., 2004). Neuro-Evolution of Augmenting Topologies (NEAT) is one

3

Chapter 1 Introduction

of such algorithms that is specifically designed for evolving the connectivifty of
Neural Networks (Stanley and Miikkulainen, 2002). Like other EAs, NEAT em-
ploys the general principle of creating a population of individuals, neural networks
that slightly differ in their connectivity, number of neurons and synaptic weights.
Through mutations, NEAT slightly changes the weights of a mutating individual,
inserts new neurons or creates a new synapse. Networks similar in structure can also
be recombined, which means that the resulting network inherits the connectivity of
the fitter one, but synaptic weights of synapses found in both networks are chosen
at random. Through the optimization process, individuals compete against each
other and only the best performing ones are allowed to create the next generation
through mutations and recombinations. By using NEAT together with SpiNNaker,
a fast neuromorphic supercomputer, Vandesompele et al. (2016) was able to teach
a SNN to play the Atari game Pacman.

Recently Bellec et al. (2018) was able to train a so-called Long Short-Term
Spiking Neural Network (LSNN) containing a mix of recurrently connected LIF-
and ALIF neurons (neurons with and without an adaptive threshold) using Back-
Propagation Through Time (BPTT). By using a pseudo-derivative in place for
the non-existing derivative of the spiking function, LSNNs for the first time reach
the performance of LSTMs. The usage of LIF neurons with an adaptive thresh-
old particularly enables the back-propagation of error signals through several hun-
dreds of time steps, avoiding the vanishing gradient problem similar to LSTMs that
achieve this with their gated memory cells. In two follow up papers, Bellec et al.
(2019a,b) also derived a biologically plausible learning rule called e-prop using its
back-propagation approach on LSNNs. As shown in Figure 1.2, e-prop basically

Figure 1.2: (a) Schematic view of an LSNN, recurrently connected Leaky Integrate and
Fire neurons, with or without an adaptive threshold are trained by combining a local
eligibility trace with an online learning signal computed as an error broadcast of the
network error. (b) Comparison of information flow for Back-Propagation Through Time
and e-prop. Image adapted from Bellec et al. (2019a).

4

uses BPTT in order to derive a local eligibility trace that can be computed forward
in time and then combines it with a learning signal. When the learning signal
is calculated using BPTT, e-prop is formally equivalent to BPTT and computes
the same gradients. By approximating the learning signal through the use of past
and present error information, a biologically plausible learning rule emerges which
achieves accuracies comparable to BPTT.

One application where traditional RNNs, specifically LSTMs, achieve high per-
formance is the control of a many-joint-robotic arm (Otte et al., 2018, 2017b, 2016).
For robotic arms with many degrees of freedom as shown in Figure 1.3, an LSTM
can learn to predict the target pose of an arm given the input angles for each joint
in a sequential order. By back-propagating the discrepancy between a desired goal
position and its current estimation, an input gradient can be computed. This input
gradient can then be used together with a gradient optimization method in order
to adjust the joint angles and to smoothly steer the arm towards its goal position.

Traditional control algorithms like Rapid Exploring Random Trees or the Co-
variant Hamiltonian Optimization Motion Planner can need seconds to compute
complex trajectories like those required by many-joint robotic arms (Kuffner and
LaValle, 2000; Zucker et al., 2013). Not only are SNNs implemented in neuromor-
phic hardware highly energy-efficient, they are also extremely fast and thus could
enable the energy-efficient control of many-joint robotic arms in real-time. So the
goal of this thesis is to explore whether biologically plausible SNNs, specifically
LSNNs, could be trained to control the movement of such robotic arms through the
process of action inference.

Figure 1.3: Action inference with a 20-joint robotic arm (top) and a 40-joint robotic
arm (bottom). Image adapted from Otte et al. (2016).

5

Chapter 2

Foundations
This chapter derives the basic equations that build the foundation for the majority
of experiments performed within this thesis. This includes the manly used neuron
and network model, together with a variety of different training algorithms, ranging
from BPTT to different flavors of the biologically plausible e-prop algorithm.

2.1 Network Model
The SNN architecture used in this thesis is based on the Long Short-Term Memory
SNN (LSNN) developed by Bellec et al. (2019a, 2018). A LSNN is a simple 3-layer
SNN with an input layer, followed by a recurrently connected hidden layer, and
a readout layer. In the original LSNN, neurons from the input layer are spiking
neurons and can only send a zero or one over their synapses, which multiplies the
value with their weights. In this work, the spiking input neurons are replaced
by artificial neurons that use the identity as activation function. They work the
same way for spiking input data, but can also inject a real valued current into the
network, which then is also weighted by the synaptic input weights. Neurons from
the hidden layer are an ensemble of Leaky Integrate and Fire neurons (LIF), and
Adaptive Leaky Integrate and Fire neurons (ALIF).

vt+1
j = αvtj +

∑
i

win
i,jx

t+1
i +

∑
i

wrec
i,j z

t
i − ztjvthr (2.1)

The action potential or voltage vtj of an LIF neuron is updated according to Equa-
tion 2.1. Here xt+1

i are the inputs from input neurons, zti are hidden spikes and
α = e−∆t/τm is a decay factor based on the membrane time constant τm and the
length of one simulation time step ∆t. After a spike ztj, the voltage is reset by
subtracting the value of the firing threshold vthr.

ALIF neurons use a threshold adaption value atj in order to calculate an adaptive
threshold atj,thr.

at+1
j = ρatj + ztj (2.2)

atj,thr = vthr + βatj (2.3)

7

Chapter 2 Foundations

This threshold adaption value increases with each spike ztj and slowly decays back
to the base threshold vthr based on the adaption decay factor ρ = e−∆t/τa , where τa
is the adaption time constant. The adaptive threshold atj,thr is then computed using
a constant threshold increase factor β as shown in Equation 2.3. The dynamics of
ALIF, except for the adaptive threshold, evolve according to Equation 2.1. From
Bellec et al. (2019a, 2018) it is not clear whether the reset of an ALIF neuron uses
the adaptive threshold atj,thr or the base threshold vthr, but neither version showed a
significant improvement over the other regarding the simulations performed during
this thesis, so the simple reset about the base threshold was used for the experiments
performed within this thesis.

The effect of an adaptive threshold can be clearly seen in Figure 2.1, where an
LIF and an ALIF neuron are both supplied with a constant input current, and
the same base threshold. On the right side, the time between consecutive spikes
increases for an ALIF neuron, while on the left side an LIF neuron spikes in regular
intervals.

With the constant or adaptive threshold the spikes of LIF and ALIF neurons are
calculated using the Heaviside step function as shown in Equation 2.4 and 2.5.

ztj,LIF = H

(
vtj − vthr

vthr

)
(2.4)

ztj,ALIF = H

(
vtj − atj,thr

vthr

)
(2.5)

The outputs of the LSNN are leaky integrators called readout neurons that sum
up the network spikes from the current time step, which is due to the layer-wise
computation of the network (Equation 2.6).

vt+1
k = αvtk +

∑
j

wout
j,k z

t+1
j (2.6)

0.2

0.8

v
jt

0.5

1.5

v
t j

20 40 60 80
0.2

0.8

timesteps in ms

z
t j

20 40 60 80
0.2

0.8

timesteps in ms

z
t j

Figure 2.1: Comparison of LIF and ALIF neurons. Left: LIF neuron with a constant
input current of 0.1 and a threshold of 1.0. Right: ALIF neuron with a constant input
current of 0.1, a base threshold of 1.0 and a threshold increases constant of β = 0.27.

8

2.2 Back-Propagation Through Time

2.2 Back-Propagation Through Time
In this section, a mathematical framework is presented in order to formally derive
the equations to update the synaptic weights of an LSNN using Back-Propagation
Through Time (BPTT). It is assumed that for a given time step, the network’s
state can be described by the hidden state vectors stj for each neuron and their
corresponding observable output states ztj.

For LIF neurons this hidden state vector is one-dimensional and contains the
voltage vtj, while for ALIF neurons it is two-dimensional and contains the voltage
vtj together with the threshold adaption value atj (Equation 2.7 and 2.8).

stj,LIF
def
= vtj (2.7)

stj,ALIF
def
=

vtj

atj

 (2.8)

The network dynamics then evolve according to Equation 2.9, where xt+1 are
the vector of network inputs at time step t+ 1 and w is the vector containing the
network weights.

For each neuron the network function f then maps from the current hidden state
stj to the next hidden state st+1

j , given the network’s inputs, weights and observable
states.

st+1
j = f(stj, zt,xt+1,w) (2.9)

The next assumption is that a given error function E(z1, ..., zT) only depends on
the neuron outputs over a specific simulation time T .

For shorter equations the following simplified definitions are used.

∂st+1
j

∂stj
def
=

∂f

∂stj
(stj, zt,xt+1,w) (2.10)

It is worth mentioning, that there is an explicit distinction between partial deriva-
tives and total derivatives of the network function f with respect to a certain vari-
able. While df/d denotes the total derivative, ∂f/∂ stands for the partial derivative.

In order to use back-propagation to train an LSNN, one would need to calculate
the derivative of the Heaviside step function, which is not defined. To overcome
this problem, Bellec et al. (2019a) uses a pseudo-derivative ht

j in place for the
non-existing derivative of the Heaviside step function.

Using this pseudo-derivative, one can calculate the derivative of the the hidden
state stj by the observable state ztj for LIF (Equation 2.11) and ALIF (Equation 2.12
and 2.13) neurons (see Figure 2.2 for a visualization).

∂ztj
∂vtj,LIF

def
= ht

j,LIF = γ max

(
0, 1− |

vtj − vthr

vthr
|
)

(2.11)

9

Chapter 2 Foundations

∂ztj
∂vtj,ALIF

def
= ht

j,ALIF = γ max

(
0, 1− |

vtj − atj,thr
vthr

|
)

(2.12)

∂ztj
∂atj

def
= −βht

j,ALIF = −βγ max

(
0, 1− |

vtj − atj,thr
vthr

|
)

(2.13)

Using this derivatives, one can derive the basic equations for the error gradient
of E with respect to a specific weight.

dE

wi,j

=
∑
t

dE

dstj
∂stj
wi,j

(2.14)

δδδtj
def
=

dE

dstj
=

dE

ztj

∂ztj
∂stj

+
dE

dst+1
j

∂st+1
j

∂stj
(2.15)

dE

ztj
=
∑
k

dE

dstk
∂stk
∂ztj

+
∑
i

dE

dst+1
i

∂st+1
i

∂ztj
+

dE

dst+1
j

∂st+1
j

∂ztj
(2.16)

The delta error δδδtj (Equation 2.15) just as the error function derived by the hidden
spike (Equation 2.20) expand into the future and can be calculated using back-
propagation.

2.2.1 Error Gradients for LIF Neurons
For LIF neurons the hidden state vector stj is one-dimensional and equals vtj. So
the gradients for input and recurrent weights compute to the sum of delta errors
over time masked with the timing of presynaptic spikes for recurrent weights or
weighted by the input value for input weights.

dE

win
i,j

=
∑
t

δδδtjx
t
i (2.17)

0.1
0.2

h
t j

0.1
0.2

h
t j

20 40 60 80
0.2

0.8

timesteps in ms

z
t j

20 40 60 80
0.2

0.8

timesteps in ms

z
t j

Figure 2.2: Comparison of LIF and ALIF neuron derivatives, with a derivative dumping
factor of γ = 0.3. Left: LIF neuron with a constant input current of 0.1 and a threshold
of 1.0. Right: ALIF neuron with a constant input current of 0.1, a base threshold of 1.0
and a threshold increases constante of β = 0.27.

10

2.2 Back-Propagation Through Time

dE

wrec
i,j

=
∑
t

δδδtjz
t−1
i (2.18)

By replacing stj with vtj in the equation for the delta error (Equation 2.15), and
also inserting the pseudo-derivative one gets:

δδδtj =
dE

ztj

∂ztj
∂vtj

+
dE

dvt+1
j

∂vt+1
j

∂vtj

=
dE

ztj
ht
j + δδδt+1

j α

(2.19)

The derivative of the error function with respect to the output spike then com-
putes to the weighted sum over output delta errors from the present time step, plus
weighted delta errors from recurrent neurons from the next time step, minus the
delta error from the next time step multiplied with the firing threshold.

dE

ztj
=
∑
k

dE

dstk
∂stk
∂ztj

+
∑
i

dE

dvt+1
i

∂vt+1
i

∂ztj
+

dE

dvt+1
j

∂vt+1
j

∂ztj

=
∑
k

δδδtk
∂stk
∂ztj

+
∑
i

δδδt+1
i

∂st+1
i

∂ztj
− δδδt+1

j vthr

=
∑
k

wout
j,k δδδ

t
k +

∑
i

wrec
j,i δδδ

t+1
i − δδδt+1

j vthr

(2.20)

2.2.2 Error Gradients for ALIF Neurons
For ALIF neurons the hidden state vector stj is two-dimensional and contains vtj
and atj. But still, the gradients for input and recurrent weights compute to the sum
of voltage delta errors over time masked with the timing of presynaptic spikes for
recurrent weights or weighted by the input value for input weights.

dE

win
i,j

=
∑
t

(
dE
dvtj

dE
datj

)
∂vtj
win

i,j

∂atj
win

i,j


=
∑
t

(
δtj,v δtj,a

)xt
i

0


=
∑
t

δtj,vx
t
i

(2.21)

dE

wrec
i,j

=
∑
t

δtj,vz
t−1
i (2.22)

11

Chapter 2 Foundations

The partial derivative of the next hidden state by the current one ∂st+1
j /∂stj is now

a 2x2 matrix for ALIF neurons.

∂st+1
j

∂stj
=


∂vt+1

j

∂vtj

∂vt+1
j

∂atj

∂at+1
j

∂vtj

∂at+1
j

∂atj

 =

α 0

0 p

 (2.23)

Inserting this state derivative matrix into the equation for the delta error gives a
two-dimensional delta error containing a voltage delta error part and an adaption
delta error part.

δδδtj =
dE

ztj

∂ztj
∂stj

+
dE

dst+1
j

∂st+1
j

∂stj

=
dE

ztj

 ht
j

−ht
jβ

+

α 0

0 p

δtj,v

δtj,a


=

dE

ztj

 ht
j

−ht
jβ

+

αδtj,v

pδtj,a


(2.24)

The error function derived with respect to the output spike then becomes a
weighted sum of voltage delta errors over time from readout and hidden neurons.
The future error of the neuron j is incorporated in the second part of the final
equation, where the voltage delta error from the next time step weighted with the
base threshold is subtracted and the adaption delta error from the next time step
is added.

dE

dztj
=
∑
k

dE

dstk
∂stk
∂ztj

+
∑
i

dE

dst+1
i

∂st+1
i

∂ztj
+

dE

dst+1
j

∂st+1
j

∂ztj

=
∑
k

dE

dstk
∂stk
∂ztj

+
∑
i

dE

dst+1
i

∂st+1
i

∂ztj
+

dE

dst+1
j

−vthr
1


=
∑
k

δδδtk
∂stk
∂ztj

+
∑
i

δδδt+1
i

∂st+1
i

∂ztj
+
(
δt+1
j,v δt+1

j,a

)−vthr
1


=
∑
k

δδδtkw
out
j,k +

∑
i

(
δt+1
i,v δt+1

i,a

)wrec
j,i

0

− δt+1
j,v vthr + δt+1

j,a

=
∑
k

wout
j,k δ

t
k,v +

∑
i

wrec
j,i δ

t+1
i,v − δt+1

j,v vthr + δt+1
j,a

(2.25)

12

2.3 E-Prop

2.2.3 Error Gradients for Output Synapses
For readout neurons as defined in Equation 2.6, the delta error is an exponential
decaying sum of future errors with respect to the particular readout neuron k.

δδδtk =
∂E

∂stk
+

dE

dst+1
k

∂st+1
k

stk

=
∂E

∂stk
+ δδδt+1

k α

(2.26)

Using a summed squared error function E = 1
2

∑
t,k(v

t
k − ut

k)
2 with the target

output ut
k for readout neuron k at time step t, the delta error computes to a ex-

ponential smoothed difference between the readout neuron’s output and the target
signal.

δδδtk = (vtk − ut
k) + δδδt+1

k α (2.27)

The resulting gradient for output synapses is then the masked sum (by presy-
naptic spikes) of filtered readout errors.

dE

dwout
ik

=
∑
t

dE

dstk
∂stk
wout

ik

=
∑
t

((vtk − ut
k) + δδδt+1

k α)zti

=
∑
t

∑
t′≥t

(vt
′

k − ut′

k)α
t′−tzti

(2.28)

2.2.4 Error Gradients for Network Inputs
In order to use a gradient optimization technique for input values, the input gradient
for a specific input and time step can be computed by weighting all hidden delta
errors from that time step with the input synapses from the input in question.

dE

dxt
i

=
∑
j

∂stj
∂xt

i

dE

dstj
=
∑
j

win
i,j

dE

dstj
=
∑
j

win
i,jδδδ

t
j (2.29)

2.3 E-Prop
The motivation of the e-prop algorithm is that BPTT is a biologically implau-
sible way of solving the Temporal Credit Assignment problem (TCA) (Lillicrap
and Santoro, 2019). Instead experimental data suggest that the brain solves TCA
by combining local eligibility traces, which are accumulated information about a

13

Chapter 2 Foundations

synapse’s activation history, with neuromodulator based reward signals (Gerstner
et al., 2018).

The e-prop algorithm derives this principle of combining local eligibility traces
with an online learning signal, by factoring the error gradients from BPTT into a
sum of products between local eligibility traces and online learning signals.

dE

dwi,j

=
∑
t

Lt
je

t
i,j (2.30)

Equation 2.30 shows this general decomposition of the error gradient for the synap-
tic weight wi,j into the sum of online learning signal Lt

j at time step t and the
eligibility trace eti,j at the same time step. Eligibility traces here refer to all infor-
mation that is currently available at the synapse. So it only considers past events,
while the learning signal in this factorization contains the future errors.

dE

dwi,j

=
∑
t

dE

dstj
∂stj
∂wi,j

=
∑
t

(
dE

dztj

∂ztj
∂stj

+
dE

dst+1
j

∂st+1
j

∂stj
)
∂stj
∂wi,j

=
∑
t

(
dE

dztj

∂ztj
∂stj

+ (
dE

dzt+1
j

∂zt+1
j

∂st+1
j

+ (· · ·)
∂st+2

j

∂st+1
j

)
∂st+1

j

∂stj
)
∂stj
∂wi,j

=
∑
t

∑
t′≥t

dE

dzt
′
j

∂zt
′
j

∂st′j

∂st′j
∂st′−1

j

∂st′−1
j

∂st′−2
j

· · ·
∂st+1

j

∂stj
∂stj
∂wi,j

=
∑
t

∑
t′≤t

dE

dztj

∂ztj
∂stj

∂stj
∂st−1

j

∂st−1
j

∂st−2
j

· · ·
∂st′+1

j

∂st′j

∂st′j
∂wi,j

=
∑
t

dE

dztj

∂ztj
∂stj

∑
t′≤t

∂stj
∂st−1

j

∂st−1
j

∂st−2
j

· · ·
∂st′+1

j

∂st′j

∂st′j
∂wi,j

def
=
∑
t

dE

dztj

∂ztj
∂stj

εti,j

def
=
∑
t

dE

dztj
eti,j

def
=
∑
t

Lt
je

t
i,j

(2.31)

The derivation of the e-prop gradient calculation as shown in Equation 2.31 works
by inserting the expansion of the delta error from Equation 2.15 into Equation 2.22.
Through future expansion, one can rewrite the delta error part as a sum of products

14

2.3 E-Prop

of future state derivatives. This product of future derivatives is defined to represent
the identity for t < t′ − 1 (Equation 2.32).

∂stj
∂st−1

j

∂st−1
j

∂st−2
j

· · ·
∂st′+1

j

∂st′j
def
= 1, (if t < t′ − 1) (2.32)

The sum of products of future state derivatives multiplied with the hidden state
derived by the synaptic weight can then be defined as what is called an eligibility
vector (εti,j). The eligibility vector multiplied with derivation of the observable
state by the hidden state is then defined as the eligibility trace. The remaining
dE/ztj would expand into the future, and is thus defined as the learning signal Lt

j.

εti,j =
∑
t′≤t

∂stj
∂st−1

j

∂st−1
j

∂st−2
j

· · ·
∂st′+1

j

∂st′j

∂st′j
wi,j

= εt−1
i,j

∂stj
∂st−1

j

+
∂stj
wi,j

(2.33)

Splitting the eligibility trace into a product of pseudo-derivative and eligibility
vector is useful since the eligibility vector is determined by the recursively nested
Equation 2.33 that can be computed incrementally forward in time.

2.3.1 Eligibility Traces for LIF Neurons
For LIF neurons, the eligibility trace is one-dimensional and is basically a product
of pseudo-derivatives and filtered input spikes.

εin,t+1
i,j = εin,ti,j

∂st+1
j

∂stj
+

∂st+1
j

win
i,j

= εin,ti,j α + xt+1
i (2.34)

εrec,t+1
i,j = εrec,ti,j

∂st+1
j

∂stj
+

∂st+1
j

wrec
i,j

= εrec,ti,j α + zti (2.35)

Equation 2.34 and 2.41 show the recursive calculation of eligibility vectors for
input and hidden synapses.

et+1
i,j =

∂zt+1
j

∂st+1
j

εt+1
i,j = ht+1

j εt+1
i,j (2.36)

The eligibility trace is then given by Equation 2.36.

15

Chapter 2 Foundations

2.3.2 Eligibility Traces for ALIF Neurons
For ALIF neurons, the eligibility vector is two-dimensional and the state derivative
is a 2x2 matrix. Using the state derivative as defined in Equation 2.23 leads to
the same eligibility trace as for LIF neurons, since one gets the following eligibility
vector, assuming ε0i,j = 0:

εt+1
i,j =

∂st+1
j

∂stj
· εti,j +

∂st+1
j

∂θrecji

=

α 0

0 p

 ·
εti,j,v

εti,j,a

+

zti

0


=

αεti,j,v + zti

pεti,j,a


=

αεti,j,v + zti

0



(2.37)

This results in the following eligibility trace, which is equal to that of LIF neurons:

et+1
ji =

∂zt+1
j

∂st+1
j

· εt+1
i,j

=
(
ht+1
j −ht+1

j β
)εt+1

i,j,v

εt+1
i,j,a


= ht+1

j (εt+1
i,j,v − βεt+1

i,j,a)

= ht+1
j (εt+1

i,j,v − β0)

= ht+1
j εt+1

i,j,v

(2.38)

In order to compute a eligibility trace that reflects the adaptive behavior of the
underlining neuron, instead of using the above derivation, Bellec et al. (2019a) in-
serts the definition of iztj as given in Equation 2.5 into the equation for the adaptive
threshold 2.3, which then leads to the following state derivative.

∂st+1
j

∂stj
=


∂vt+1

j

∂vtj

∂vt+1
j

∂atj

∂at+1
j

∂vtj

∂at+1
j

∂atj

 =

α 0

ht
j p− ht

jβ

 (2.39)

Using this extended state derivative from Equation 2.39 one gets the following

16

2.3 E-Prop

two-dimensional eligibility vectors for input and recurrent synapses.

εin,t+1
i,j = εin,ti,j

∂st+1
j

∂stj
+

∂st+1
j

win
i,j

=

α 0

ht
j p− ht

jβ

 ·
εin,ti,j,v

εin,ti,j,a

+

xt+1
i

0


=

 αεin,ti,j,v + xt+1
i

ht
jε

in,t
i,j,v + (p− ht

jβ)ε
in,t
i,j,a


(2.40)

εrec,t+1
i,j = εrec,ti,j

∂st+1
j

∂stj
+

∂st+1
j

wrec
i,j

=

 αεrec,ti,j,v + zti

ht
jε

rec,t
i,j,v + (p− ht

jβ)ε
rec,t
i,j,a

 (2.41)

This then leads to the one-dimensional eligibility trace for ALIF neurons:

et+1
i,j =

∂zt+1
j

∂st+1
j

εt+1
i,j

=
(
ht+1
j −ht+1

j β
)εt+1

i,j,v

εt+1
i,j,a


= ht+1

j (εt+1
i,j,v − βεt+1

i,j,a)

(2.42)

2.3.3 E-Prop 1: Learning Signals through Random
Feedback Connections

To be biologically plausible, a learning signal can not rely on calculations of future
errors. Therfore, e-pop 1 calculates an approximation of the true learning signal
dE/dztj (Equation 2.20) by ignoring future state errors of neuron j together with
future errors from recurrently connected neurons. While this generally seems to
work well, Bellec et al. (2019a) does not really ground this approximation, which
could be problematic since it ignores all future influence of the current spike ztj.

Lt
j =

dE

ztj
≈
∑
k

dE

dstk
∂stk
∂ztj

(2.43)

Equation 2.43 still comprises a problem for a biologically plausible learning signal,
since the total derivative dE/dstk still depends on future errors, but this problem can

17

Chapter 2 Foundations

be resolved for a summed squared error function:

dE

dwi,j

=
∑
t

Lt
je

t
i,j

≈
∑
t,k

dE

dstk
∂stk
∂ztj

eti,j

=
∑
t,k

((vtk − ut
k) + δδδt+1

k α)wout
j,k)e

t
i,j

=
∑
t,k

∑
t′≥t

(vt
′

k − ut′

k)α
t′−twout

j,k e
t
i,j

=
∑
t,k

∑
t′≤t

(vtk − ut
k)α

t−t′wout
j,k e

t′

i,j

=
∑
t

(
∑
k

wout
j,k (v

t
k − ut

k))
∑
t′≤t

αt−t′et
′

i,j

(2.44)

By using the learning signal as defined in Equation 2.43, one gets a gradient
calculation rule that only depends on past errors by turning the filtering of future
errors into a filtering of past eligibility traces in Equation 2.44.

Since it is biologically implausible that errors would get weighted with the same
value as the forward synapses, one can replace wout

j,k by a random feedback connec-
tion wfb

j,k.
The derivative for output weights can also be calculated using past errors only:

dE

dwout
i,k

=
∑
t

dE

dstk
∂stk
wout

i,k

=
∑
t

((vtk − ut
k) + δδδt+1

k α)zti

=
∑
t

∑
t′≥t

(vt
′

k − ut′

k)α
t′−tzti

=
∑
t

∑
t′≤t

(vtk − ut
k)α

t−t′zt
′

i

=
∑
t

(vtk − ut
k)
∑
t′≤t

αt−t′zt
′

i

(2.45)

Equation 2.45 turns the filtering of future errors into a filtering of past hidden
spikes.

2.3.4 Error Gradients for Network Inputs
Bellec et al. (2019a) does not apply the principles e-prop to input gradients, since

18

2.3 E-Prop

input errors as derived in Equation 2.29 do not contain eligibility traces, which can
only accumulated information about the activation history of a synapse.

Nevertheless an approximate input gradient can be derived that also neglects
future errors in the same fashion as e-prop.

dE

dxt
i

=
∑
j

∂stj
∂xt

i

dE

dstj
=
∑
j

win
i,j(

dE

dztj

∂ztj
∂stj

+
dE

dst+1
j

∂st+1
j

∂stj
) (2.46)

By ignoring the future errors in Equation 2.46 one gets an approximate input
error containing a learning signal similar to e-prop 1:

dE

dxt
i

≈
∑
j

win
i,j

dE

dztj

∂ztj
∂stj

=
∑
j

win
i,jL

t
j

∂ztj
∂stj

(2.47)

If one uses random feedback weights and the current output error to calculate the
learning signal Lt

j, the approximate input error is a weighted sum over randomly
weighted network errors multiplied with hidden (pseudo-)derivatives. So it only
contains information about the network error at the present time step.

2.3.5 E-Prop 2 based Input Errors
Another way to calculate a biologically plausible input error is to use an approach
similar to e-prop 2 where a separate LSNN (called error module) computes the
learning signals Lt

j.
In order to train this error module that outputs learning signals, an error for this

learning signal has to be derived. One way of doing this is to use so-called one shot
learning, where an input error is calculated by using both the first LSNN together
with the learning signals from the error module, and using the resulting gradient
to update the inputs once.

x̂t
i = xt

i −
∑
j

θjiL
t
jh

t
j (2.48)

Equation 2.48 shows such an update rule, for an one shot learned input x̂t
i. Based

on this equation, one can derive an error for the learning signal Lt
j.

dE

dLt
j

=
∑
i

dE

dx̂t
i

∂x̂t
i

∂Lt
j

= −
∑
i

dE

dx̂t
i

θjih
t
j (2.49)

The learning signal error as shown in Equation 2.49 contains a new error based
on the updated input x̂t

i, which has to be computed. This is done by simply running
the first LSNN again with the updated input and computing the input error for it.

19

Chapter 3

Emergence of STDP in E-Prop
based Gradients
This chapter is somewhat separate from the rest of this thesis and shows an insight
into e-prop, which was discovered after the majority of experiments were already
performed and thus had no influence on experiments regarding the action inference
of the many-joint robotic arm.

The e-prop algorithm as derived in Section 2.3 uses a very simple way of intro-
ducing a refractory period, by simply preventing the neurons from firing during a
specified time window after the last spike. During this forced refractory period,
the pseudo-derivatives are set to zero, but the neuron dynamics are otherwise un-
changed.

By using a slightly more complex neuron model like the Izhikevich neuron which
already has a refractory period built in, a Spike-Timing-Dependent Plasticity (STDP)
based learning naturally emerges from eligibility traces.

STDP as already mentioned in the Introduction is a hebbian learning rule based
on the order of pre- and postsynaptic spikes (Caporale and Dan, 2008). With STDP,
the synaptic connection between two neurons is strengthened if the presynaptic
neuron fires shortly before the postsynaptic one, implying a causal relationship
between the pre- and postsynaptic spike. A weakening of the synapse occurs for
events where the presynaptic neuron spikes shortly after the postsynaptic one,
implying an uncorrelated spiking of the two neurons.

This chapter formally derives eligibility traces for Izhikevich neurons and experi-
mentally shows the emergence of STDP influenced gradients when computed using
e-prop. Also through simple modifications to the LIF neuron model the emergence
of STDP based gradients in LSNNs is shown experimentally and mathematically.

3.1 Izhikevich Neuron
As already described in the Introduction, the Izhikevich neuron is a precise, but
computationally cheap model of a biological neuron that uses two parameterizable
differential equations.

For the derivation of eligibility traces, the typical parameter for those equations

21

Chapter 3 Emergence of STDP in E-Prop based Gradients

are used (Izhikevich, 2003).

v′ = 0.04v2 + 5v + 150− u+ I (3.1)

u′ = 0.004v − 0.02u (3.2)

Equation 3.1 and 3.2 show the differential equations used by Izhikevich (2003)
with the membrane voltage v and the recovery variable u. Once the membrane
voltage crosses 30mV, a spike is emitted and v and u are reset in the following way:

if v < 30mv then
v ← −65mV
u← u+ d

end if

After the reset, the neuron enters a refractory period where the voltage v goes
to around 80mv as shown in Figure 3.1.

In order to derive an eligibility trace for Izhikevich neurons, the Equations 3.1
and 3.2 have to be modelled in discrete time steps, and also the reset has to be
modelled within the new equations. To accomplish this, the variables ṽtj and ũt

j are
introduced in order to replace v and u in the standard equations.

ṽtj = vtj − (vtj + 65)ztj (3.3)

ũt
j = ut

j + 2ztj (3.4)

Now v and u can be computed in discrete time steps using Euler integration with
a constant step size of δt.

vt+1
j = ṽtj + δt(0.04(ṽtj)

2 + 5ṽtj + 140− ũt
j + I tj) (3.5)

ut+1
j = ũt

j + δt(0.004ṽtj − 0.02ũt
j) (3.6)

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800

−50

0

time steps

v
in

m
V

Figure 3.1: Membrane voltage of an Izhikevich neuron over time. Each simulation time
step equals 0.25 milliseconds.

22

3.1 Izhikevich Neuron

In order to derive the eligibility trace, the hidden state of Izhikevich neurons is
now defined as a two-dimensional vector containing vtj and ut

j.

stj =

vtj

ut
j

 (3.7)

The state derivative is then the following 2x2 matrix, which can be simplified
assuming binary values for ztj.

∂st+1
j

∂stj
=


∂vt+1

j

∂vtj

∂vt+1
j

∂ut
j

∂ut+1
j

∂vtj

∂ut+1
j

∂ut
j


=

1− ztj + 0.08δt(vtj − (vtj + 65)ztj)(1− ztj) + 5δt(1− ztj) −δt
0.004δt(1− ztj) 1− 0.02δt


=

1− ztj + 0.08δtvtj(1− ztj) + 5δt(1− ztj) −δt
0.004δt(1− ztj) 1− 0.02δt


=

(1− ztj)(1 + (0.08vtj + 5)δt) −δt
0.004δt(1− ztj) 1− 0.02δt


(3.8)

Given this, the eligibility vector computes to the following form:

εt+1
i,j =

∂st+1
j

∂stj
· εti,j +

∂st+1
j

∂θrecji

=

(1− ztj)(1 + (0.08vtj + 5)δt) −δt
0.004δt(1− ztj) 1− 0.02δt

 ·
εti,j,v

εti,j,u

+

δtzti

0


=

(1− ztj)(1 + (0.08vtj + 5)δt)εti,j,v − δtεti,j,u + δtzti

0.004δt(1− ztj)ε
t
i,j,v + (1− 0.02δt)εti,j,u


(3.9)

As shown in Equation 3.9, the recovery eligibility vector εti,j,u is an exponential
filter of the voltage eligibility vector just like for ALIF neurons. In contrast to
ALIF neurons, the voltage eligibility vector εti,j,v is not separated from the recovery
part. Instead, whenever an Izhikevich neuron spikes, its voltage eligibility vector is
reset to the negative recovery eligibility vector.

23

Chapter 3 Emergence of STDP in E-Prop based Gradients

In order to derive the final eligibility trace, a pseudo-derivative similar to the one
for LIF neurons is used:

ht
j = γ max(0, 1− |

vtj − 30

30− 2c
|) (3.10)

With this pseudo-derivative, the neuron spike ztj derived by the hidden state stj
is then defined as: 

ztj
vtj

ztj
ut
j

 def
=

ht
j

0

 (3.11)

The eligibility trace then simply computes to the pseudo-derivative times the
voltage eligibility vector.

et+1
ji =

∂zt+1
j

∂st+1
j

· εt+1
i,j =

(
ht+1
j 0

)εt+1
i,j,v

εt+1
i,j,a

 = ht+1
j εt+1

i,j,v (3.12)

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

timesteps

input voltage
output voltage

voltage eligibility
recovery eligibility
pseudo-derivative

eligibility trace
gradient

Figure 3.2: Simulation of a positive rewarded STDP behavior of two connected Izhike-
vich neurons, where the output neuron fires shortly after the input neuron. As a result,
a gradient computed with a constant positive learning signal increases. Zero is marked
with a dashed line in each plot.

24

3.1 Izhikevich Neuron

To inspect the evolution of the derived eligibility traces, two Izhikevich neurons
are weakly connected by a synapse and receive random inputs to simulate the
behavior within a greater network.

To visualize the influence of the eligibility trace on the gradient, a constant
positive learning signal is used, and the gradient is calculated based on Equation
2.31.

In the simulation shown in Figure 3.2, an artificial strengthening STDP behavior
is introduced by using an overall lower random input current for the output neuron.
An output spike shortly after an input spike is then ensured by steady increasing
the random input current for the output neuron after the input neuron spiked. This
positive STDP behavior is reflected within the increasing gradient.

In Figure 3.3 a synaptic weakening STDP behavior is induced, by using a higher
random input current for the output neuron. An input spike shortly after an output
spike is then ensured by steady increasing the random input current for the input
neuron after the output neuron spiked.

In contrast to the positive STDP behavior, where the voltage and refractory

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

timesteps

input voltage
output voltage

voltage eligibility
recovery eligibility
pseudo-derivative

eligibility trace
gradient

Figure 3.3: Simulation of a negative rewarded STDP behavior of two connected Izhike-
vich neurons, where the input neuron fires shortly after the output neuron. As a result,
a gradient computed with a constant positive learning signal decreases. Zero is marked
with a dashed line in each plot.

25

Chapter 3 Emergence of STDP in E-Prop based Gradients

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

timesteps

input voltage
output voltage

voltage eligibility
recovery eligibility
pseudo-derivative

eligibility trace
gradient

Figure 3.4: Simulation of two connected Izhikevich neurons with uncorrelated firings,
where both positive and negative rewarded STDP events occur. As a result, a gradient
computed with a constant positive learning signal tends to decay back to zero. Zero is
marked with a dashed line in each plot.

eligibility are positive, here the voltage and refractory eligibility get negative and
the tendency to weaken the synapse is clearly reflected in the decreasing gradient.

For neurons that spike uncorrelated, Figure 3.4 shows that the gradient fluctuates
and tends to go back to zero.

While a general tendency to reflect STDP behavior in gradients based on the
eligibility traces of Izhikevich neurons can be discovered, it is not completely obvious
how specific STDP events emerge within the Izhikevich eligibility vector equations.

3.2 STDP-LIF Neuron
While a STDP influenced gradient can not be observed with the standart equations
for LIF or ALIF neurons within an LSNN, by slightly modifying the original LIF
equation (3.13), a clear STDP based eligibility trace emerges.

vt+1
j = αvtj + I tj − ztjvthr (3.13)

In order to compute such an eligibility trace that reflects the STDP behavior of

26

3.2 STDP-LIF Neuron

the synapse connecting two LIF neurons, the LIF equation (3.13) has to be slightly
altered into what is now called a STDP-LIF neuron:

vt+1
j = αvtj + I tj − ztjαv

t
j − z

t−δtref
j αvtj (3.14)

Instead of using a soft reset about the fixed threshold, in Equation 3.14 the
STDP-LIF neuron is hard reset to zero whenever it spikes, and whenever its re-
fractory period ends (δtref being length of the refractory time period). Since the
reset does include the voltage vtj it is now included into hidden state derivative and
therefore into the computation of the eligibility trace:

∂vt+1
j

∂vtj
= α− ztjα− αz

t−δtref
j = α(1− ztj − z

t−δtref
j) (3.15)

εt+1
i,j =

∂st+1
j

∂stj
· εti,j +

∂st+1
j

∂θrecji

= α(1− ztj − z
t−δtref
j)εti,j + zti (3.16)

et+1
ji =

∂zt+1
j

∂st+1
j

· εt+1
i,j = ht+1

j εt+1
i,j (3.17)

0 20 40 60 80 100 120 140 160 180 200

timesteps

input voltage
output voltage

voltage eligibility
pseudo-derivative

eligibility trace
gradient

Figure 3.5: Simulation of two connected STDP-LIF neurons with uncorrelated spikes.
STDP events are clearly shown in the eligibility trace, where first a positive rewarded
output after input spike occurred, followed by two negative rewarded input after output
spikes. The uncorrelated spiking is also reflected in the gradient, which tends to decay
back to zero. Zero is marked with a dashed line in each plot.

27

Chapter 3 Emergence of STDP in E-Prop based Gradients

This effectively resets the eligibility trace after a spike and after the refractory
period.

An eligibility trace that reflects the STDP behavior of its synapse can now be
introduced by using a constant negative pseudo-derivative during the refractory
period and otherwise leave the neuron dynamics unchanged. Any incoming spike
during the refractory period now produces a negative eligibility trace that persists
for the time of the refractory period and has a negative influence on the gradient.

This STDP influenced gradient is shown in Figure 3.5 where two connected
STDP-LIF neurons receive random input in order to produce uncorrelated spikes.
Strengthening and weakening STDP events can be clearly identified in the eligibility
trace and directly influence the resulting gradient. Thus by simple modifications to
the LIF neuron, one can derive eligibility traces for STDP-LIF neurons that reflect
the STDP behavior of the underlying synapse.

Since gradients which are computed using eligibility traces together with a back-
propagated learning signal are mathematically equivalent to normal BPTT, it can
be argued that BPTT itself facilitates STDP behavior.

28

Chapter 4

Predictive Forward Model

The basis for controlling the movement of a many-joint robotic arm through action
inference is a forward model that learns to predict the endeffector pose of the arm,
based on the angles for each joint. Input angles that direct the arm to a desired goal
position can be inferred using such a trained forward model by back-propagating
the discrepancy between the predicted and the target position. By using the back-
propagated input errors, the joint angles can be adjusted using Gradient Descent
to navigate the endeffector to reach a target position.

This chapter outlines the design, implementation and training of an LSNN ca-
pable of predicting the position and orientation of such a many-joint robotic arm.

Figure 4.1: Draft of a Recurrent Spiking Forward Model. Within the time window τ , the
network gets the joint angles ϕn and an optional clock (clk) signal as inputs and predicts
the joint position 0

nÃ. Calculating the joint angles for a desired endeffector position 0
N

∗
A

is done by extracting a temporal gradient for the error signal L, which represents the
difference between a desired joint position 0

N

∗
A and its current estimation 0

N Ã. Image
adapted from Otte et al. (2017b).

29

Chapter 4 Predictive Forward Model

4.1 Methods
The basic predictive forward model is outlined in Figure 4.1. The network is an
LSNN with 2 inputs representing x and z angles (y being the up-direction) and
9 outputs representing the (x, y, z) position and orientation (up- and x-direction
vector). Additionally the network can receive one or several clock inputs, in order
to synchronize the output calculation and therefore improve the prediction.

The network computation is splitted into several time windows (τ). During each
window the network receives the x and y angles of the currently processed joint ϕn,
and outputs its position and orientation 0

nÃ.
The outputs are calculated as a mean of the readout neurons for a specific time

τout < τ at the end of a time window. If the network receives clock inputs, they
are given during τout. In order to calculate the position and orientation for the
endeffector of a robotic arm, the network is run for N time windows, and the joint
angles are successively inputted into the network until it outputs the endeffector
position and orientation 0

N Ã during the last time window.

4.1.1 Implementation
For this thesis an LSNN was implemented using C++ 11 as main programming
language and CUDA 9.2 for performance critical parts. As shown in Figure 4.2 an
object orientated class hierarchy was used, where abstract blueprints for neurons,
synapses, gradients, optimizers and networks define the base functionality of the
framework.

The neuron base class for example defines access functions a subclass needs to
implement in order to access the current action potential, or check whether a neuron
has fired during the current time step. Also a function that returns the value of
the pseudo-derivative needs to be implemented by a subclass.

A synapse class is composed of a presynaptic and postsynaptic neuron, and has
to provide functionality in order to calculate the eligibility trace of the implemented
synapse type, which is determined by the postsynaptic neuron type. Gradients are
then computed for one synapse each, and need to provide a function that computes
and returns this gradient. An optimizer class then uses a gradient in order to
calculate a weight update for the synapse of that gradient.

The network class manages the interplay of neurons, synapses, gradients and
optimizers. Therefore a mandatory update function has to be implemented in all
subclasses in order to perform one simulation step for the class implementing it.
This way, the BasicNetwork class computes one complete simulation time step by
first updating input neurons and input synapses, then updating hidden neurons
and hidden synapses followed by readout synapses and readout neurons. After
the neuron and synapse updates, the gradients are updated and afterwards the
optimizer’s update functions are called in order to update the synaptic weights.

30

4.1 Methods

UNREGISTERED

BasicNetwork

BasicNeuron BasicSynapse

BasicOptimizer

BasicGradient

LeakyIntegrateAndFireNeuron

LeakyIntegrateAndFireSynapse

AdaptiveLeakyIntegrateAndFireSynapse

FixedBroadcastGradient

LeakyReadoutGradient

CurrentInputGradient

FiringRateGradient

BackPropagatedGradient

StochasticGradientDecentOptimizer

AdamOptimizer LongShortTermEligibilityNetwork

FullRobotArmPredictorNetwork

FullRobotArmInferenceNetwork

FullRobotArmInferenceEpropNetwork

FullRobotArmPredictorBasedForwardNetwork

SignDampedMomentumOptimizer

AdaptiveLeakyIntegrateAndFireNeuron

Figure 4.2: Class diagram showing the most important classes of the implemented LSNN
framework. Yellow: Abstract base classes defining blueprints and providing implementa-
tions of common functionality. Green: Neurons. Cyan: Synapses. Orange: Gradients.
Purple: Optimizers. Blue: Networks.

31

Chapter 4 Predictive Forward Model

The described abstract classes provide a flexible and extensible neural network
implementation suitable for exploring different neuron and eligibility designs, like
the STDP-LIF neuron or the Izhikevich neuron, which were introduced in the pre-
vious chapter.

In order to implement an LSNN, several subclasses are implemented, for example
the LIF and ALIF neuron and their corresponding synapses.

The basic functionality of the LSNN is implemented in the class LongShortTer-
mEligibilityNetwork from which specific network classes are derived to perform the
different experiments within this thesis.

The described framework is optimized for readability and builds an LSNN in a
simple and understandable way. Therefore it is especially not optimized for speed,
since this would require storing and computing with large matrices, which are not
as easy to understand and maintain as dedicated classes for neurons, synapses,
gradients and optimizers.

In the used BasicNetwork class, a simple list off all neurons, synapses, gradients
and optimizers is kept and updated. The connectivity of the network can then be
defined by child classes. The dedicated classes then also allow an easier debugging.

In order to train an LSNN, a separate speed improved CUDA framework was
developed, that implements the basic functionality of computing a fully connected
LSNN simulation with up to 1024 hidden neurons.

Separate CUDA kernels for the different experiments performed in this thesis are
implemented.

The main kernels for BPTT and eligibility based gradients are shown in Fig-
ure 4.3.

The redundant implementation of neurons, synapses and gradients provides a
simple way of developing and testing specialized CUDA kernels by comparing GPU
results to those computed with the CPU based framework.

BasicNetwork

BasicNeuron BasicSynapse

BasicOptimizer

BasicGradient

LongShortTermMemoryKernelCaller

LongShortTermMemoryKernel

LongShortTermMemoryBackPropagationKernel

LongShortTermMemoryFixedBroadcastKernel

Figure 4.3: Composition diagram: Performance critical computation is redundant im-
plemented and can be run either on the CPU (green, cyan, orange) or on the GPU
(yellow).

32

4.1 Methods

While an optimizer implementation would also benefit the parallel computing
capabilities of the GPU, in tests the actual execution time of the optimizers on the
CPU compared to the whole network simulation on the GPU was negligible and
thus the optimizers were not implemented in CUDA.

4.1.2 Input Encoding
The simplest way to input data into an LSNN is to directly use real values and
interpret them as an input ”current” that is injected into the network. A more
biologically plausible way is to encode the inputs using spikes. One way to do this
is by using place codes as proposed in Bellec et al. (2018).

ri = rmax e−100(ζi−ζ)2 (4.1)

In this place code, several input neurons are assigned to one input. Each of those
input neurons has a value specific firing rate ri which is determined by Equation 4.1,
where ζi is the value the neuron i is tuned to.

4.1.3 Training
In order to train the predictive forward network, two types of 3D simulations were
created, as shown in Figure 4.4.

Figure 4.4: 3D-Simulations of a many-joint robotic arm with 2, 5, 10 and 20 joints.
Mathematical simulation showing positions and orientations (top) and realistic CAD
based simulation (bottom).

33

Chapter 4 Predictive Forward Model

The simple 3D simulation is based on a mathematical model of an idealized
many-joint robotic arm, with per joint x-, z-rotations and a y-translation. In this
simulation the joint positions are represented by a flat cube, while an arrow em-
bedded within the cube represents the relative x-direction and the arrow pointing
to the next cube represents the relative y-direction (up-vector). The sphere at the
top of the robot represents the endeffector position.

The second simulation is based on the CAD files of an actual robot arm, with
a joint diameter of 100mm and an average joint distance of around 58mm. The
movement of each joint is controlled by four small servo motors, that each drives
a linear gear. This configuration allows for any x-, z-rotations of a joint with
maximum angles of±20 degrees. The endeffector of the robot is a gripper controlled
by another small servo.

While the CAD based simulation is not physically plausible, it does not account
for masses, forces or object collisions, the general dynamic is restricted to ”plausi-
ble” movements. This means that object interactions of directly connected CAD
parts are taken into account. So additionally to a fixed y-translation, a joint also
performs small x- and z-translations based on the specific x- and z-angles in order
to correct for CAD part interactions. Also the endeffector y-translation (around
126mm) is different from the joint y-translations (58mm).

In order to be comparable to the realistic model, the distance between two joints
in the mathematical simulation is set to 80mm, while the joint’s cube diameter is
also set to 80mm.

During training, new target arm positions are generated for each batch by ran-
domly choosing joint x- and z-angles and computing the corresponding joint posi-
tions and orientations. Also with a certain probability, edge-cases which are con-
secutive sharp turns in the same direction, are included into the training samples
of each batch.

Orientation vectors are directly used as targets, while position coordinates are
normalized by dividing them with the distance between two joints.

When computing input-output pairs, it is important to group the input angles
with the output position and orientation that are directly affected by those inputs.
Figure 4.5 shows this dependency.

A given joint’s x- and z-rotation with angles (aix, aiz) directly affects the directions
vix, v

i
y and the position pi+1. So (aix, a

i
z)→ (pi+1, vix, v

i
y) is the easiest grouping that

enables the learning of an input-output relationship.
The effect of any other input-output grouping is that the network has to re-

member the affected outputs longer than one time window and already gets new
inputs while it calculates outputs depending on previous inputs. For example, if
one chooses the naive input-output grouping of (aix, aiz)→ (pi, vix, v

i
y) the output pi

is actually computed using the angles (ai−1
x , ai−1

z). Thus the network has to remem-
ber those inputs while already getting the new inputs (aix, aiz), which are needed in
order to compute vix, v

i
y.

34

4.2 Results

Figure 4.5: Schematic representation of the dependencies between input angles and
output position and orientation. Using angles aix (not shown) and aiz one can compute
position pi+1 and the x- and y-orientation vix, v

i
y.

4.2 Results
The Networks presented in this thesis were trained on either a Nvidia GTX-1070
Desktop-GPU or a Nvidia RTX-2070 Laptop GPU. While LSNNs with 1024 hidden
neurons could theoretically be trained using the developed framework, due to the
very long training time, only LSNNs up to 256 hidden neurons were considered for
the majority of experiments.

In order to compare results, the main metric used in this thesis is an Euclidean-
distance error ||E||2, which for predictive forward networks is defined as the mean
Euclidean-distance between the actual joint positions and the predicted joint posi-
tions.

||E||2
def
=
∑
i

√
|| ∗pi − pi||2 =

∑
i

√
(

∗
pix − pix)

2 + (
∗
piy − piy)

2 + (
∗
piz − piz)

2 (4.2)

The ||E||2 error which is given in millimeters allows an intuitive comparison, and
is a direct measure of the real accuracy of the compared models.

4.2.1 Training
If not stated otherwise, networks were trained using BPTT with a batch size of 128
and the Adam optimizer with a learning rate of 0.001.

35

Chapter 4 Predictive Forward Model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

0

20

40

60

80

100

Epochs

||E
|| 2

standart
joints
angles

Figure 4.6: Comparison of curriculum learning with standard learning on an LSNN
with 128 hidden neurons on a 10-joint robotic arm with max angles of 45 degrees. For
angle based curriculum learning, the max training angles started by 10% of the final
angle and increased about 10% every 1000 epochs. For joint based curriculum learning,
learning started with one joint and increased about one joint every 1000 epochs. Plots
were averaged of 5 training runs with independent initialized networks.

For the time window τ 12ms are used, which are 12 simulation time steps, and
for the output decoding 7ms are used.

Since for each batch a new set previously not seen input-output pairs are com-
puted, training epochs in this thesis refer to the number of weight updates per-
formed during training.

In contrast to Otte et al. (2018), where curriculum learning was used to train the
most accurate models, curriculum learning did not improve the prediction accuracy
of an LSNN.

Figure 4.6 shows two separate curriculum learning approaches together with a
standard training run. The angle based approach is adapted from Otte et al. (2018),
and uses increasingly greater angles during training. The second approach steadily
increases the number of joints of the robot arm, and therefore has the advantage of
shorter simulation times during most of the training. Nevertheless, both approaches
on average fail to reach the accuracy for a standard training run with full angles
and joints from the start, regarding the same number of overall training epochs.

While e-prop manages to achieve reasonable accuracies when training a predictive
forward LSNN (see Figure 4.7), BPTT generally outperforms e-prop, and was thus
mainly used to train LSNNs.

36

4.2 Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

50

60

70

80

90

100

Epochs

||E
|| 2

BPTT
e-prop 1
e-prop 1s

Figure 4.7: Comparison of e-prop with BPTT for a predictive forward LSNN with
128 hidden neurons on a 10-joint robotic arm with max angles of 45 degrees. While
e-prop shows a slower convergence than BPTT, it also manages to achieve an acceptable
accuracy. Using biologically plausible random feedback weights (e-prop 1) only slightly
decreases the performance in comparison to symmetric feedback weights (e-prop 1s).
Plots were averaged over 5 training runs using independently initialized LSNNs.

4.2.2 Input Encoding
Figure 4.8 (left) shows the comparison of an LSNN trained using a place code with
40 input neurons per input value, as described in Bellec et al. (2018).

Despite being biologically plausible, the place code shows a slower convergence
and overall accuracy. Also since it uses more computational resources for other tests

0 0.2 0.4 0.6 0.8 1

·104

60

80

100

Epochs

||E
|| 2

place code
current-based input

0 0.2 0.4 0.6 0.8 1

·104

60

80

100

Epochs

||E
|| 2

no clock
single clock

several clocks

Figure 4.8: Left: Place code vs current-based input encoding for a predictive forward
LSNN with 128 hidden neurons. Right: Effect of additional clock inputs on the perfor-
mance of a predictive forward LSNN with 128 hidden neurons. Plots were averaged over
5 training runs using independently initialized LSNNs.

37

Chapter 4 Predictive Forward Model

performed in this thesis, if not stated otherwise, the current-based input encoding
is used.

The right plot of Figure 4.8 shows that a clock input also improves the overall
performance of the predictive forward network. While a significant improvement
can already be achieved by adding a third input neuron supplying a constant in-
put current during output calculations within τout. The performance still slightly
increases if one adds a separate clock neuron for each joint, which only supplies a
clock input during the readout time for the pose estimation of that specific joint.

If not other wise stated, this approach of one clock neuron per joint is used in
following experiments.

4.2.3 Accuracy
The accuracy of an LSNN predicting the position and orientation of the joints of a
robotic arm heavily depends on the length of the simulated arm as well as on the
maximum angles each joint can move as shown in Figure 4.9.

20 40 60 80

20

40

60

80

100

max angle

||E
|| 2

24 25 26 27 28

40

60

80

100

120

number of hidden neurons

||E
|| 2

5 10 15 20

0

50

100

150

num joints

||E
|| 2

104 105

45

50

55

Epochs

||E
|| 2

Figure 4.9: Evaluation of different predictive forward LSNNs. Top: Different number
of angles/hidden neurons for a mathematical robot arm with 10 joints. Bottom-Left:
LSNNs trained on mathematical arms with different number of joints. Bottom-Right:
Euclidean-training error over 150,000 epochs, averaged over 5 runs. Confidence intervals
are based on 5 training runs of LSNNs with 128 hidden neurons over 10,000 epochs and
calculated using the Student-t (α = 5%) distribution.

38

4.2 Results

Figure 4.10: Trained predictive forward LSNN with 128/256 hidden neurons for 10-/20-
joint arms with ±45 degree angles and final ||E||2 accuracies of around 43mm/96mm.
From top to bottom: Average predictions followed by fail-cases.

39

Chapter 4 Predictive Forward Model

Also the number of hidden neurons used greatly affects the prediction accuracy.
Acceptable performance can be achieved with 10,000 to 30,000 epochs of training,
but the LSNN still continues to improve after 100,000 epochs as shown in Figure 4.9
(bottom-right).

While the network generally achieves a reasonable accuracy when trained with
random arm positions, the performance significantly drops on edge-cases, as shown
in Figure 4.10. The network usually fails on arm positions involving very sharp
turns or when two consecutive joints have very dissimilar angles.

Another problem is that errors add up and increase for joints calculated later
during the simulation. While the accuracy seems to decrease linearly with greater
angles, this is not the case for an increased number of joints. Since the LSNN
processes the joint angles sequentially, the prediction of the n-th joint depends on
the prediction of the previous joint, therefore the predictions successively get worse
for later joints. Nevertheless, on average accurate predictions can be achieved even
for 20-joint arms (Figure 4.10 top row).

4.2.4 Realistic Simulation
Training an LSNN to predict the arm pose of a robotic arm based on the simulation
of an actual robot using CAD files should be harder than the mathematical model,
since interactions between the different CAD parts cause slight translations of the
position of each joint depending on the x and z angles. Those translations amplify

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

20

40

60

80

Epochs

||E
|| 2

realistic
math

Figure 4.11: LSNN trained to predict the pose of a 10-joint realistic robotic arm sim-
ulation in comparison with an LSNN trained to predict the mathematical model of a
10-joint robotic arm with max angles of 20 degrees. 128 hidden neurons were used for
both LSNNs. Plot shows the average error of 5 independent runs for each simulation
type.

40

4.2 Results

over the length of the robotic arm, and thus the endeffector reaches a significant
different target for the same joint angles as the mathematical model. On the
other hand, since the realistic arm can only use joint angles up to 20 degrees, the
prediction should be easier as the mathematical model for significant higher angles.
Also the distance between each joint is less than in the mathematical model (58mm
compared to 80mm). This means that the realistic arm has a smaller effective range
as an arm based on the mathematical model with the same number of joints and
the same maximum angle of 20 degrees, which again could make it easier for the
LSNN to predict the pose of the arm.

As it turned out, an LSNN has no problem learning the dynamics of the realistic
model, and indeed exceed the accuracy of a mathematical model with the same
number of joints and maximum angle degree, as shown in Figure 4.11.

41

Chapter 5

Inference
This chapter goes into the details of action inference using a biologically plausible
Long Short-Term Spiking Neural Network (LSNN).

By calculating a temporal error gradient for the inputs of a forward model pre-
dicting the pose estimation of a many-joint robotic arm, it is possible to navigate
through joint space, which enables the controlled movement of the robot to a desired
goal position.

5.1 Methods
The main procedure of action inference uses BPTT, but this chapter also discusses
an e-prop like biologically plausible approach and compares it to a direct model
that calculates the joint angles given a desired goal position.

5.1.1 Back-Propagation Through Time
As described in Section 2.2.4, an input error for a given time step can be derived
by weighting the back-propagated delta errors dE/dsti with the corresponding input
weights (see Equation 2.29).

In order to compute a meaningful input gradient that allows the control of a
many-joint robotic arm through gradient descent, one needs to know the current
pose and joint angles of the robotic arm. The next step is then to feed them succes-
sively into a pre-trained LSNN that predicts the pose estimation for each joint and
outputs the endeffector position and orientation during its last time window. An
input gradient that guides the endeffector towards a desired goal is then computed
by supplying the LSNN with the goal position and an optional orientation as the
endeffector target.

The error between the predicted pose and the desired target pose is back-propagated
through time to derive an input error, which can then be minimized.

Through means of Gradient Descent or related methods, new input angles for
each joint can be computed, which move the robotic arm closer to the goal position.

By repeating the described procedure with the newly computed joint angles, one
successively moves the endeffector closer to its desired goal position.

43

Chapter 5 Inference

Figure 5.1: Draft of LSNN based action inference. Within the time window τ , the
network gets the joint angles ϕn and an optional clock (clk) signal as inputs and predicts
the joint position 0

nÃ. Calculating the joint angles for a desired endeffector position 0
N

∗
A

is done by extracting a temporal gradient for the error signal L, which represents the
difference between a desired joint position 0

N

∗
A and its current estimation 0

N Ã. Image
adapted from Otte et al. (2017b).

Using the described procedure, the inference accuracy is still limited by the ac-
curacy of the predictive forward network. This problem can be resolved by either
retraining the predictive forward model during the inference process or by using a
target correction step as described by Otte et al. (2017b).

As the robotic arm moves towards a desired goal, during retraining, the predictive
forward LSNN only gets the current arm pose as a training example. By using a
small learning rate, the network overfits in a controlled manner towards an optimal
prediction of the target pose. The difficulty of this approach is to choose a suitable
retraining learning rate, so that the prediction significantly improves for the desired
target pose, but the network does not overfit to the point that the learned dynamics
of the robotic arm are destroyed.

In order to correct the prediction error, a modified target is used to calculate the
input gradient. In a real robot, this modified target could theoretically be computed
by using a visual feedback system that tells the difference between the predicted and
actual endeffector pose of the robotic arm. In this thesis, the correction is calculated
using the actual endeffector position from the simulation, which is calculated based
on the joint angles.

pNcorrected = pNpredicted + βpos(p
N
target − pNactual) (5.1)

vNx,corrected = vNx,predicted + βrot(v
N
x,target − vNx,actual) (5.2)

vNy,corrected = vNy,predicted + βrot(v
N
y,target − vNy,actual) (5.3)

44

5.1 Methods

As described in Equations 5.1, 5.2 and 5.3, the modified endeffector target (Equa-
tion 5.4) is computed by using the distance between the actual position and orien-
tation and the target position and orientation.

(pNcorrected, v
N
x,corrected, v

N
y,corrected) (5.4)

This distance is then multiplied with a position βpos and orientation βrot based
scaling factor in the range (0, 1) and then added to the prediction in order to cal-
culate the corrected target.

For the actual inference process, two different optimizers are used. One being
Adam together with a weight decay like regularizer that regularizes for smaller
angles. The other is a modified Stochastic Gradient Descent with momentum, as
described by Otte et al. (2017b).

∆ϕt+1 = −η[Θt]2
dE
dxi

+ µ∆ϕt (5.5)

Θt+1 = αΘt + (1− α)sgn

(
dE
dxi

)
(5.6)

Equations 5.5 and 5.6 describe the used momentum optimizer. Here η is the
learning rate and µ the scaling rate of the momentum term. The resulting weight
update is scaled down depending on the oscillation of the gradient [Θt]2 (sgn rep-
resents the signum function).

5.1.2 Biologically Plausible Inference
While an LSNN can be trained using a biologically plausible training algorithm like
e-prop 1 in order to predict the position and orientation of the joints of a many-joint
robotic arm, an action inference is not directly possible with the e-prop 1 algorithm.
This is due to the fact that e-prop 1 approximates the actual error gradient by only
considering errors from the past and present time step.

For an action inference, the discrepancy between a desired goal position and
its current estimation is back-propagated through time in order to derive an error
gradient for the input angles. Since a predictive forward LSNN only outputs the
endeffector position during the last time window τN , an error has to be back-
propagated from this time window back to all previous time windows in order
to derive meaningful input errors for the joint associated with that specific time
window.

When using approximate input errors as descried in Equation 2.47, one can
calculate a learning signal Lt

j as a weighted sum of network errors from the last

45

Chapter 5 Inference

network run, which does not require to use errors from the future.

dE

dxt
i

≈
∑
j

win
j,iL

t
j

∂ztj
∂stj

=
∑
j

win
j,i

∂ztj
∂stj

∑
k

wout
j,k (v

T
k − uT

k)

(5.7)

Unfortunately, this error also does not include errors from the past activity of
the underlying synapse, since it does not include an eligibility trace, and thus is a
very limited gradient.

A better option is to use an e-prop 2 based approach where another LSNN com-
putes the learning signals based on the previous activity of the predictive forward
LSNN.

The basic principles of the e-prop 2 algorithm is that a second LSNN called error
module gets the same inputs as the predictive forward LSNN and additionally
receives the hidden spikes of the predictive forward model together with a target
signal as input. The target signal in this case is the desired goal position.

During each time step, the readouts from the error module are used as an online
learning signal for the input errors of the predictive forward model, incorporating
past information into Equation 2.47.

While this enables a biologically plausible way of computing an input gradient,
the error module itself should to be trained using BPTT.

In order to compute an error gradient that can train the error module, an error
for the learning signal Lt

j has to be derived (see Equation 2.49). This is done by
first running the predictive forward LSNN together with the error module (with a
specific target) and calculating new input angles in an one shot learning fashion,
then running the predictive forward LSNN again with the new inputs and calcu-
lating the error for this new inputs by using the desired goal as the endeffector
target.

The errors for the new inputs can then be used to calculate an error for the
learning signals of the error module.

5.1.3 Direct Inverse Model
Since one needs to compute an input error in order to train an error module that
can compute input errors, at least one error module has to be trained using BPTT.

So instead of using the e-prop 2 error network, one might directly use the back-
propagated input errors to train a direct inverse model that does not relay on the
inputs and hidden states of a predictive forward model.

A direct inverse model in this thesis is an LSNN that gets a target endeffector
position as input and has two outputs for the joint x- and z-angles. Over a simula-
tion run the direct inverse model successively outputs the joint angles for a robotic

46

5.2 Results

arm during the decoding time windows τnout, starting at the base and outputting
the angles for the joint controlling the endeffector during the last time window τNout.

The simple approach of training a direct inverse model with the joint angles
of random arm poses, given their endeffector target, would produce conflicting
gradients, since the same endeffector target can be reached using entirely different
joint angles. Instead of using a predictive forward LSNN together with a target
correction step as previously described, gradients directly based on the endeffector
position can be computed. This is done by providing the direct inverse network
with a desired endeffector position and computing the joint angles by running the
direct inverse network for N time windows. The computed joint angles are then fed
into a pre-trained predictive forward LSNN that predicts the pose of the robotic
arm based on these angles. The discrepancy between the predicted endeffector
target and the desired one can than be back-propagated to computed input errors
for the angles of each joint. These input errors can then be directly injected into
the direct inverse model to compute the gradients for the output, hidden and input
weights.

5.2 Results
Action inference as implemented in this thesis needs a predictive forward LSNN
as basis whether for training a direct inverse model or for classical inference using
BPTT.

While the predictive forward model has to learn the general dynamics of the
robotic arm, the actual prediction accuracy does not have that much of an influence
on the inference accuracy. Since it can either be corrected mathematically, or
through retraining of the predictive forward model for a desired target pose.

While retraining generally works, during experiments it turned out that when
only retraining the readout weights of the predictive forward LSNN, higher learning
rates and longer retraining periods could be used before the model overfits to the
point that the learned dynamics are destroyed and the inference procedure no longer
converges towards the desired goal.

In order to evaluate the inference process, the Euclidean-distance error ||E||2 is
redefined to capture the difference between a desired target position and the actual
arm position of the endeffector.

||E||2
def
=
√
|| ∗pN − pN ||2 =

√
(

∗
pNx − pNx)

2 + (
∗
pNy − pNy)

2 + (
∗
pNz − pNz)

2 (5.8)

Additionally, an orientation error is defined, which measures how much the in-
ferred endeffector orientation differs with the target orientation.

Erot =
180

2π

[
(acos

(
vNx ·

∗
vNx

|vNx ||
∗
vNx |

)
+ acos

(
vNy ·

∗
vNy

|vNy ||
∗
vNy |

)]
(5.9)

47

Chapter 5 Inference

In Equation 5.9, the orientation error Erot is defined as the average angle in
degrees between the target up- and x-direction vector and inferred up- and x-
direction vector.

Reachable inference targets are computed by using random angles for the robotic
arm simulation and recording the endeffector target.

If not stated otherwise, the general inference procedure starts with an upright
arm using zero angles and then iteratively computes the gradients and updates the
angles accordingly for a fixed number of epochs.

5.2.1 BPTT based Inference
Inference using BPTT achieves the highest accuracies of all inference methods pre-
sented in this thesis, and is also able to control robotic arms with the most joints (50
for the CAD based model). Additionally, it is the only inference method capable

1 2 3 4 5

100

101

102

different LSNNs

||E
|| 2

1 2 3 4 5

100

102

different LSNNs

||E
|| 2

0 500 1,000

101

102

103

Epochs

||E
|| 2

0 50 100

100

101

102

103

Epochs

||E
|| 2

Figure 5.2: Comparison of Adam-based inference (left) and momentum-based inference
(right) on a 10-joint robotic arm with maximum angles of 45 degrees. Predictive forward
LSNNs used 128 hidden neurons and were trained for 150,000 epochs. Top-row: box
plots for 5 different trained predictive forward models with 100 random inference targets
each. Bottom-row: Median (black) and interquartile range (blue) over all 500 inference
runs for each Adam and momentum based inference.

48

5.2 Results

of optimizing not only the endeffector position, but also its orientation.
When training LSNNs in order to predict the pose of a many-joint arm using the

mathematical or CAD based model, the final accuracies achieved do not vary much
if the same number of hidden neurons and training epochs are used.

For BPTT based inference, the accuracy variance for different trained predictive
forward LSNNs is even smaller, as shown in Figure 5.2, were no significant difference
for the inference accuracy using separately trained predictive forward models can
be noticed.

Figure 5.2 also shows the main differences between the two inference methods

Figure 5.3: Inference comparison of the momentum-based approach (top) and the
Adam-retraining based approach (middle) and a typical fail case (bottom) on a 10-joint
mathematically ideal robotic arm with max angles of 45 degrees. The momentum-based
approach precisely reaches its target with a sub millimeter precision, correcting the pre-
diction error which is in the range of centimeters. Adam-based approach retrains the
predictive forward LSNN to reach a sub centimeter prediction and inference accuracy.
Inference fails on heavily twisted arms where the prediction breaks down.

49

Chapter 5 Inference

(momentum- and Adam-based) on a 10-joint mathematical robotic arm with max-
imum joint angles of 45 degrees.

The Adam-retraining based approach on the left is about 10 times slower than
the momentum based approach on the right. This is due to the fact that for Adam
a much slower learning rate has to be used (0.01 compared to 0.1 for momentum).
Since Adam normalizes the gradients, it effectively changes all joint angles with
roughly the same magnitude, and therefore tends to twist the arm for larger learning
rates. These findings align with those from Otte et al. (2018), where Adam was
found to be suboptimal for action inference on many-joint robotic arms.

Also a strong regularizer that pulls the angles towards zero has to be used together
with the Adam-based approach to future reduce the tendency to twist the arm.

As already mentioned, the LSNN can only be retrained for a small number of

Figure 5.4: Inference comparison of the momentum-based approach (top) and the
Adam-retraining based approach (bottom) on a 20-joint mathematically ideal robotic
arm with max angles of 45 degrees. The momentum-based approach reflects the search
through the joint space by wiggling the top of the arm into the direction of the target, and
slowly pulling in later joints. The Adam approach moves all angles equal in magnitude
and achieves a smooth path towards the goal by heavily regularizing the angles towards
zero.

50

5.2 Results

epochs in order to keep the learned dynamics intact, so the prediction accuracy
which limits the Adam based approach can not get that much better. Still the
Adam-based approach achieves a median sub centimeter accuracy and also fails
less often than the momentum-based one.

The momentum-based approach on the other hand, which uses the mathematical
prediction correction step, achieves a median sub millimeter accuracy and also
converges much faster due to the greater learning rate that could be used.

Since both inference approaches produce fail cases in the range of several thou-
sand millimeters, the median is a better metric than the average to reflect the
typical accuracies.

The visual differences of the two approaches can be seen in Figure 5.3 and 5.4,
where the Adam based approach produces much smoother arm poses and arm move-
ments, which is due to the uniform joint modification and the strong regularizer.
In the middle row of Figure 5.3 the predictive forward LSNN retraining can also
be seen, where the prediction gets better as the arm moves towards the goal.

In contrast to the smooth Adam-based inference, the momentum-based approach
reveals the underlying search through the joint space by wiggling around with the
top of the arm and slowly pulling later joints towards the goal, also introducing
sharp angles on joints near the endeffector.

Combining the two approaches repeatedly failed to produce good inference accu-
racies, since retraining seems to conflict with the prediction correction when used
with the momentum optimizer. Also the prediction correction (without retraining)

10 20 30 40 50 60 70 80 90

10−2

10−1

100

101

102

103

max angles

||E
|| 2

Figure 5.5: Comparison of momentum-based inference accuracy using predictive forward
LSNNs for a 10-joint robotic arm with different max angles. Each experiment is based
on 5 different predictive forward LSNNs with 128 hidden neurons separately trained over
10,000 epochs with independent random initial weights. With each trained LSNN, 100
inference runs over 500 epochs are calculated, and the minimum ||E||2 are recorded.

51

Chapter 5 Inference

did not work with the Adam optimizer. Futhermore using a regularizer that pulls
the angles towards zero has not the wanted effect of smoothing the target pose or
the general arm movement when used with the momentum based optimizer. Since
the momentum optimizer computes non-uniform angle updates, the angles are ei-
ther too strong regularized so that the arm does not reach its target, or too weak
so that the top of the arm still wiggles around.

Typical fail cases for both inference approaches as shown in Figure 5.3 (bottom
row) involve highly twisted arms, where the prediction breaks down and the gradient
is unable to untwist the arm. By using a slightly smaller learning rate for a specific
target on which the arm failed, or simply using the other inference method is in
most cases enough to successfully reach the failed target on the second approach.

1 2 3 4 5

10−2

10−1

different LSNNs

||E
|| 2

1 2 3 4 5

10−2

10−1

100

different LSNNs

E
r
o
t

100 101 102 103

100

101

102

103

Epochs

||E
|| 2

100 101 102 103

100

101

102

103

Epochs

E
r
o
t

Figure 5.6: Momentum-based inference evaluation for a 20-joint robotic arm (mathe-
matical simulation) with max angles of 45 degrees. 5 different LSNN were trained with
256 hidden neurons and evaluated on 25 different targets, each for 5000 inference epochs.
Inference targets included endeffector orientation. Top: Minimum position (left) and
rotation (right) accuracies observed over 5000 epochs for each of the 5 different trained
LSNNs. Bottom: Median and interquartile-range for the position (left) and orientation
(right) accuracies during the 125 inference runs. The median and interquartile-range for
the position accuracy over 500 inference epochs, when orientation is not optimized, are
plotted in light green.
.

52

5.2 Results

Another interesting property is that the inference process tends to increase in
accuracy for greater maximum allowed angles as shown in Figure 5.5. This is in
direct contrast to the prediction that gets significantly worse the greater angles are
allowed (see Figure 4.9).

In total, 45 LSNNs are trained, 5 for each max angle configuration. Except
for the different angles all other parameters are kept the same and each LSNN
is independently initialized with random weights. With each LSNN, 100 random
targets are inferred over 500 epochs each, making a total of 500 random targets per
max angle. An educated guess is that for the 10-joint arm used, the prediction,
even for 90 degree angles, is still good enough, and the greater space of possible
arm configurations for the same endeffector pose allows a greater accuracy during
the inference process.

1 2 3 4 5
10−2

100

102

different LSNNs

||E
|| 2

1 2 3 4 5

10−1

100

101

different LSNNs

E
r
o
t

100 101 102 103

100

101

102

103

Epochs

||E
|| 2

100 101 102 103

101

102

103

Epochs

E
r
o
t

Figure 5.7: Momentum-based inference evaluation for a 25-joint CAD based realistic
robotic arm. 5 different LSNN were trained with 256 hidden neurons and evaluated on
25 different targets each for 5000 inference epochs. Inference targets included endeffector
orientation. Top: Minimum position (left) and rotation (right) accuracies observed
over 5000 epochs for each of the 5 different trained LSNNs. Bottom: Median and
interquartile-range for the position (left) and orientation (right) accuracies during the
125 inference runs. The median and interquartile-range for the position accuracy over
500 inference epochs, when orientation is not optimized, are plotted in light green.
.

53

Chapter 5 Inference

When also considering the endeffector orientation during the inference process,
the number of epochs it takes to reach a target position and orientation significantly
increases, as shown in Figure 5.6.

Also probably due to the high regularization, the Adam-based approach was
unable to orientate the endeffector at the target position into a target orientation.

While a mathematical robot model of a 20-joint arm with maximum joint angles
of 45 degrees needed about 10 times more epochs, the minimum position accuracy
still reached a sub millimeter level.

Also the desired orientation could be reached with a median angle between the
desired and inferred up- and x-direction vectors of less than one degree.

For the realistic simulation when evaluated on a 25-joint arm, the orientation
only reached a median minimum accuracy Erot of less than 10 degrees. The position
accuracy on the other hand still reached a minimum median accuracy of less than
one millimeter, but also needed a lot more epochs to converge (see Figure 5.7).

One reason for the decreased orientation accuracy of the realistic arm model
might be the fact that each joint is rotated about 45 degrees around the y-axis
when compared to the previous joint, which could make it harder for the inference
process to compute a sufficient gradient that takes this into account.

Inference using the CAD based realistic robot arm in general works better than

Figure 5.8: Momentum-based inference, with position and orientation endeffector tar-
gets on a 20-joint mathematical robotic arm with maximum angles of 45 degrees. From
left to right: Arm approaches the target position and rearranges itself to fit the desired
endeffector orientation.

54

5.2 Results

0 1000 2000 3000 4000
0

1,000

2,000

3,000

Epochs

||E
|| 2

0 1000 2000 3000 4000
0

1,000

2,000

3,000

Epochs

||E
|| 2

Figure 5.9: Comparison of momentum-based inference with long robotic arms. Left:
Mathematical 40-joint robotic arm with max angles of 45 degrees. Predictive forward
LSNN used 768 hidden neurons and was trained for around 180,000 epochs. Right:
CAD based realistic robotic arm with 50 joints. Predictive forward LSNN used 512
hidden neurons and was trained for around 150,000 epochs. Each plot shows the median
(black) and interquartile range (blue) for 25 random inference targets.

the mathematical arm with the default max angles of 45 degrees when only the
endeffector position is inferred. This is mostly due to the fact that the realistic arm
only allows for max angles of ±20 degrees, and therefore more robust predictive
forward models can be trained even for arms with 50 joints (100 degrees of freedom).
Although the number of faile cases seem to increase with more joints, the 50-joint
arm can precisely reach a target with the typical sub millimeter precision using the
momentum optimizer (see Figure 5.10.

In Figure 5.9, a 50-joint CAD based robotic arm is compared with a 40 joints
mathematical robotic arm using 45 degree angles.

While the 50-joint realistic arm reached a prediction accuracy of ||E||2 ≈ 203mm
and could infer angles to reach target poses using the momentum-based approach
with a median accuracy of ||E||2 = 0.352, a high number of faile cases can be seen
in the high upper quantile ||E||2 error.

The 40-joint mathematical arm on the other hand reached a prediction accuracy
of ||E||2 ≈ 197mm and a median inference accuracy of ||E||2 = 0.136. Also the
upper quantile clearly decays torwards zero.

The increased performance of the 40-joint arm could be due to the fact that 768
hidden neurons are used for the prediction LSNN instead of 512 for the 50-joint
CAD based arm. Thise was done since the same arm could not infer tragets using
the momentum-based approach with 512 hidden neurons.

Since each of the LSNNs needed several days to train and then several days to
evaluate, only a single LSNN could be trained for each experiment. Still the evalu-
ation of those LSNNs could be representative, since for smaller arms the variance
between different trained predictive forward models was insignificant for the same
number of epochs and hidden neurons.

55

Chapter 5 Inference

Figure 5.10: Momentum-based inference for a realistic robot arm simulation using CAD
files. From left to right: Arm starts with zero angles and moves towards the red
endeffector goal. First-Row: 10-joint arm. Second- and Third-Row: 25-joint arm.
Fourth- and Fifth-Row: 50-joint arm.

56

5.2 Results

5.2.2 E-Prop based Inference
As already mentioned, the e-prop 1 based inference approach has only access to
present information in order to calculate an input error.

Experiments using the Adam-based approach completely failed to produce mean-
ingful goal directed behavior using this e-prop 1 based error.

With the momentum-based approach some goal directed behavior could be ob-
served, but the arm is far from reaching the desired goal positions as shown in
Figure 5.11, where the arm has a median distance to the target of over 100mm.

Using the described one shot learning approach based on e-prop 2, the training
data for an error module was calculated by using the endeffector position for a
random arm pose as target and then starting with zero angles which are fed into
a predictive forward model. The hidden spikes together with the input angles and
the target are fed into the error LSNN and the computed errors are used to update
the input angles. The predictive forward model is then run again with the new
input angles, and the discrepancy between the endeffector position based on the
newly computed angles and the target is used to compute a learning gradient for
the error LSNN.

The new angles are also used as a starting point for the next iteration and The
arm pose is reset back to zero angles randomly after an average of 10 consecutive
iterations.

By initializing the error module with small readout weights (factor 0.001 smaller
than normal), the angle updates are initially very small and converge over the
training towards an one shot learning.

By design, the one shot learning uses a learning rate of 1.0 and a trained error
module only slightly improves the first pose when run again as shown in Figure 5.12.

Also using a smaller learning rate and therefore taking smaller steps towards

1 2 3 4 5

102

103

different LSNNs

||E
|| 2

0 50 100 150 200 250

200

400

600

800

1,000

Epochs

||E
|| 2

Figure 5.11: E-prop 1 like inference for 5 different LSNNs using 128 hidden neurons
trained to predict the pose of a 10-joint robotic arm with a maximum of 45 degree angles.
Left: Comparison of 100 inference runs for each independent trained LSNN. Right:
Median (black) and interquartile range (blue) over all 500 inference runs.

57

Chapter 5 Inference

1.0 0.5 0.25 0.1 0.05

101

102

inference learnrate

||E
|| 2

2 4 6 8 10

50

100

Epochs

||E
|| 2

Figure 5.12: E-prop 2 based one shot like inference based on 5 different experiments with
different predictive forward models and error module LSNNs each. Predictive forward
LSNNs used 128 hidden neurons and the error module LSNNs used 256 hidden neurons.
Left: Best inference accuracy for different learning rates evaluated using 25 independent
random targets for each of the 5 error module LSNNs. The experiments for each learning
rate used a total number of epochs based on the following formula: Epochs = 10/η Right:
Median (black) and interquartile range (blue) over all 125 runs with a learning rate of
1.0 for each epoch the overall best accuracy (of that run) is recorded.

the goal did not improve the overall accuracy. It actually increased the minimal
reached distances from the goal as shown in Figure 5.12.

While not as accurate as the BPTT based inference, the accuracy on the e-prop 2
based approach reaches a median accuracy below 10cm for a mathematical based
10-joint robotic arm with max angles of 45 degrees which is around four times
better than the e-prop 1 based approach.

1 2 3 4 5
100

101

102

different LSNNs

||E
|| 2

100 101 102 103 104
0

200

400

600

Epochs

||E
|| 2

Figure 5.13: Direct inverse model evaluation based on 5 different direct inverse LSNNs
that where each trained using a different predictive forward LSNN. Predictive forward
LSNNs used 128 hidden neurons and direct inverse LSNNs 256 hidden neurons. Left:
Accuracy for each direct inverse model, based on early stopping (the network weights
that produced the lowest training error are used for evaluation). Right: Training error
of the 5 different direct inverse LSNNs. Overfitting occurs in 4 networks after around
15,000, 20,000 60,000 and 65,000 epochs.

58

5.2 Results

5.2.3 Direct Inverse Model
In contrast to the e-prop 2 inference, where an error module is trained to adjust
the current joint angles in a way that moves the robot towards the desired goal
position, with the direct inverse model joint angles are directly calculated based
on a desired goal position. This implies that the model learns a mapping from 3D
space to joint space, since no other input information are given.

The training of such direct inverse models tends to overfit at some point, where
the arm learns a pose that has a short distance to the average endeffector training
target.

Nevertheless, by using an early stopping approach, where the training is stopped
before the model overfitts, the direct inverse LSNNs produce accuracies similar to
the e-prop 2 based approach as shown in Figure 5.13.

59

Chapter 6

Robot
In order to test the inference process outside of a simulation within the real world,
a robotic arm based on the CAD files used in the realistic simulation (Figure 6.1
and 6.2) is evaluated within this chapter.

The 8-joint robotic arm as shown in Figure 6.4 was designed using OpenSCAD
and built from Polylactic Acid (PLA) plastic using a Fused Deposition Modeling
(FDM) 3D-Printer (Boparai et al., 2016; Wong and Hernandez, 2012; Kintel and
Wolf, 2011; Swetham et al., 2017).

Each joint is moved by four small servo motors that drive a horizontal linear
gear. Each of those linear gears is connected over a ball-joint with the base of the
next joint. By adjusting the height of the four linear gears each joint can approach
any x-, z-angle combination within a range of [−20, 20] degrees.

In order to compensate the change in position when approaching high angles, the
ball joints are not directly connected with the base of the next joint, they rather

Figure 6.1: Left: single joint from the CAD based simulation. Right: Gripper from
the CAD based simulation.

61

Chapter 6 Robot

run in a linear track which points from the middle of the base to the outside.
Each joint is also rotated about 45 degrees around the y-axis relative to its

previous joint, so that the linear gears form different joints do not collide with each
other.

While there is a hole in the middle of each module to allow the routing of cables
within the arm towards the base, one of the servo driver modules had to be posi-
tioned within the arm, since it was impractical to route the cables form the top 4
joints to the base.

The gripper on top of the robot is controlled by a single servo that opens or
closes it.

Holding the robot upright in a neutral position, the 32 joint motors consume
an average of about 15 Watt, while during movement, especially when returning
from highly bend position where the gripper is far from the base, the motors can
consume up to 40 Watt.

Figure 6.2: CAD files of the different parts for building the 8-joint robotic arm. Top-
Row: Base unit for one joint containing four servo mounts and linear gear shafts. In the
back view, the linear tracks, which are part of the dynamic connection between joints, are
visible The normal gear can be turned a total of 180 degrees by the servo motors, in order
to move the linear gear up and down. The ball-joint at the end of the linear gear can be
printed in place and is thus inseparable connected with the linear gear. Bottom-Row:
The gripper base- and movable-unit contains 8 connectors for mounting the 8 gripper
arms. A servo mounted on the back of the gripper base unit controls the inner movable
part of the gripper.

62

Since the Arduino microcontroller is very limited in working memory, it was not
possible to directly run an LSNN on the board. Instead a program that enables the
easy setting of the x- and z-angles for each joint and also accounts for the relative
y-rotation of the joints was implemented. While it is in general possible to set the
angles for each joint over a serial communication channel, for ease of usage, the
angles for desired arm poses were directly copied into the code.

In order to evaluate the accuracy of the robot, the angles to reach 25 different
targets were computed using BPTT based inference on an LSNN with 128 hidden
neurons, trained to predict the pose of a 8-joint robotic arm with the CAD based
simulation. The computed angles were then copied into the program code and
uploaded onto the Arduino.

Each different arm pose was then approached from a neutral position (zero angles)
and held for 30 seconds to allow manual measurements.

Y-target

XZ-target

Y-STD

XZ-STD

simulation ||E||2

Y-inference

XZ-inference

10−1

100

101

ac
cu

ra
cy

in
cm

Figure 6.3: Evaluation of the robotic arm on 25 random poses. Each pose was ap-
proached and measured independently 5 times. From left to right: Error between the
measured height (y-distance) and the target height. Error between the measured distance
from the center (xz-distance) and the target distance form the center. Standard deviation
of the height measurement for all 25 poses. Standard deviation of the xz-distance mea-
surement for all 25 poses. The ||E||2 inference accuracy (in centimeter) of the inferred
poses. Error between the measured height and the actual height calculated within the
simulation based on the angles for each joint. Error between the measured xz-distance
and the actual xz-distance calculated within the simulation based on the angles for each
joint.

63

Chapter 6 Robot

Figure 6.4: 8-joint robot moving a red ball from one socket to another. Angles for the
two (socket-)targets were inferred using a CAD based prediction LSNN, together with a
manual target correction step where the target was successively altered until the robot
was able to successfully grab/release the ball. In order to approach the two targets, the
inferred angles were interpolated from a neutral stand (zero angles). Images taken by
Christoph Traub.

64

Each of the 25 poses were approached independently for 5 times and the height
from the ground to the tip of the gripper, together with the distance from the
ground (below the tip) to the base of the robot were recorded.

While the height could be measured very accurately with an average deviation
below one centimeter, the distance from the ground to the center had a measure-
ment uncertainty of one to three centimeters.

Nevertheless, when compared to the theoretical endeffector position based on the
inferred angles, the robotic arm had a median accuracy of around two centimeters
and a median accuracy of around five to six centimeters when compared to the
actual target.

A slightly more complex task of moving a ball from one socket to another, as
shown in Figure 6.4, could also be executed by using a manual target correction
step, where the inference target for the two sockets were iteratively refined in order
to compute the inferred angles which allowed the arm to grab and release the ball
at the two target positions.

65

Chapter 7

Conclusion and Future Work

This thesis explored the application of recurrent Spiking Neural Networks (SNNs),
specifically Long Short-Term SNNs (LSNNs), for action inference on many-joint
robotic arms.

The training of a forward model that predicts the pose estimation in 3D space,
given the x- and z-angles for each joint in a sequential manner, worked well, even
for realistic robot arm models with up to 100 degrees of freedom.

While it is feasible to train an LSNN using the biologically plausible learn algo-
rithm e-prop 1 and achieve high prediction accuracies, BPTT generally converges
faster and achieves higher accuracies.

It could be shown that e-prop can produce error gradients that incorporate
the Spike-Timing-Dependent-Plasticity of the underlying synapse, but the derived
equations for Leaky Integrate and Fire neurons reset the eligibility trace, each time
a spike occurs and therefore potentially destroys the aggregation of past error infor-
mation within the eligibility trace. Nevertheless they show a fascinating property
of the e-prop algorithm and are interesting for future research.

Inference based on BPTT worked especially well when only a specific position
should be reached, the target could be approached with a sub millimeter precision
with less than 150 angle updates.

For cases where the endeffector should also be orientated in a specific manner
at the goal position, the inference process needed significantly more time but still
achieved sub millimeter accuracy.

Future research using BPTT based inference could incorporate collision detection
as used with LSTMs by Otte et al. (2018).

An odd trend could be discovered, where the position based inference, got more
accurate the higher angles are allowed, although the prediction accuracy got sig-
nificantly worse for larger angles. This trend was discovered for a mathematical
arm with 10 joints, where the prediction accuracy even for 90 degree angles is still
reasonable. It would be interesting to see whether this trend continues for longer
arms.

While the evaluation of mathematical arms over 40 joints was mostly limited by
the available GPU hardware, it remains an open question how much one can scale
up the model, using larger networks that could be trained on more sophisticated

67

Chapter 7 Conclusion and Future Work

hardware.
Biologically plausible inference possess a problem since it can not relay on future

errors, and thus the simplistic e-prop 1 based approach repeatedly failed to reach
a desired goal position.

Inference based on e-prop 2 involves a separate LSNN that acts as an error
module and computes online learning signals in order to calculate input gradients.
With these e-prop 2 based input gradients some sort of one short learning could
be achieved, where a desired goal position can be inferred by a single pass of
the prediction LSNN together with the error LSNN. Unfortunately, the accuracy
achieved with this approach has still an error of several centimeters, and needs to
be improved to be of practical usage.

A direct inverse model that learns a mapping from 3D (Endeffector) space to joint
space produces a one shot inference with a comparable accuracy to the e-prop 2
based approach, but tends to overfit during learning.

A topic for future research could be the exploration of a hierarchical one shot
model. Since the accuracy of the direct inverse and the e-prop 2 based inference is
dependent on the length of the robotic arm, it is plausible to use several trained
one shot models to significantly improve the overall performance by a hierarchical
application.

This could be accomplished by calculating only the angles for the first joint with
the LSNN that can compute the inference of the complete arm with N joints. By
using a model for an arm with N − 1 joints and staring at the inferred position of
the first joint, one could refine the inferred position of the second joint, assuming
a greater accuracy of the model for the shorter arm. Applying this principle one
needs N models, but the computation could be carried out in only N time windows,
since each model only has to compute the angles for its first joint.

For the training of the error LSNN it was assumed that BPTT is needed, but
one may instead try to use the approximated e-prop 1 like input errors for training
in order to get an error module that produces a slightly better input error and then
use this error module to train another one. By repeating this procedure of training
one error module with another, it could be possible to train an error module entirely
in a biologically plausible way.

As demonstrated with the realistic CAD-based simulation, it is possible to train
many-joint robotic arms and also achieve reasonable performance when applying
the inferred angles without further processing on a real robot. By using a more
sophisticated simulation that also models object collision and other forces that act
on the robot, it should be possible to improve the accuracy of the real robot.

An interesting subject for future research would also be a target correction step
for a real robot based on sensory or visual feedback.

Since the base joint has to carry the weight of the whole arm, the used robot
with 8 joints and a gripper as endeffector is at the edge of what is possible using
small servos. While scaling the model with stronger motors and more joints should

68

be possible, another scenario where the used design could be extended with more
joints, is using the robot not as an arm but more like a robotic snake. In this way,
one joint does not have to carry the weight of all other joints above, but instead the
robot could crawl over the ground, which would probably require less force from
the servos than to lift up the whole arm. This would also be an interesting scenario
to investigate goal-directed policy inference with LSNNs as described by Otte et al.
(2017a).

69

Abbreviations
AI Artificial Intelligence
ANN Artificial Neural Network
BPTT Back-Propagation Through Time
TCA Temporal Credit Assignment
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
SNN Spiking Neural Network
LSNN Long Short-Term Spiking Neural Network
CNN Convolutional Neuronal Network
EPSP Excitatory Post Synaptic Potential
IPSP Inhibitory Post Synaptic Potential
LIF Leaky Integrate and Fire
ALIF Adaptive Leaky Integrate and Fire
STDP Spike-Timing-Dependent Plasticity
EA Evolutionary Algorithm
NEAT Neuro-Evolution of Augmenting Topologies

71

Bibliography
Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,

Imam, N., Nakamura, Y., Datta, P., Nam, G.-J., et al. (2015). Truenorth:
Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic
chip. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 34(10), 1537–1557.

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018). Long
short-term memory and learning-to-learn in networks of spiking neurons. In
Advances in Neural Information Processing Systems, pages 795–805.

Bellec, G., Scherr, F., Hajek, E., Salaj, D., Legenstein, R., and Maass, W. (2019a).
Biologically inspired alternatives to backpropagation through time for learning
in recurrent neural nets. arXiv preprint arXiv:1901.09049.

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., and
Maass, W. (2019b). A solution to the learning dilemma for recurrent networks
of spiking neurons. bioRxiv, page 738385.

Boparai, K. S., Singh, R., and Singh, H. (2016). Development of rapid tooling
using fused deposition modeling: a review. Rapid Prototyping Journal, 22(2),
281–299.

Borges, R., Borges, F., Lameu, E., Batista, A., Iarosz, K., Caldas, I., Viana, R.,
and Sanjuán, M. (2016). Effects of the spike timing-dependent plasticity on the
synchronisation in a random hodgkin–huxley neuronal network. Communications
in Nonlinear Science and Numerical Simulation, 34, 12–22.

Burkitt, A. N. (2006). A review of the integrate-and-fire neuron model: I. homo-
geneous synaptic input. Biological cybernetics, 95(1), 1–19.

Caporale, N. and Dan, Y. (2008). Spike timing–dependent plasticity: a hebbian
learning rule. Annu. Rev. Neurosci., 31, 25–46.

Cichy, R. M., Khosla, A., Pantazis, D., Torralba, A., and Oliva, A. (2016). Com-
parison of deep neural networks to spatio-temporal cortical dynamics of human
visual object recognition reveals hierarchical correspondence. Scientific reports,
6, 27755.

73

Bibliography

Gerstner, W., Lehmann, M., Liakoni, V., Corneil, D., and Brea, J. (2018). Eligi-
bility traces and plasticity on behavioral time scales: experimental support of
neohebbian three-factor learning rules. Frontiers in neural circuits, 12.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8), 1735–1780.

Huang, S., Rozas, C., Trevino, M., Contreras, J., Yang, S., Song, L., Yoshioka, T.,
Lee, H.-K., and Kirkwood, A. (2014). Associative hebbian synaptic plasticity in
primate visual cortex. Journal of Neuroscience, 34(22), 7575–7579.

Hwu, T., Isbell, J., Oros, N., and Krichmar, J. (2017). A self-driving robot using
deep convolutional neural networks on neuromorphic hardware. In 2017 Inter-
national Joint Conference on Neural Networks (IJCNN), pages 635–641. IEEE.

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on
neural networks, 14(6), 1569–1572.

Kar, K., Kubilius, J., Schmidt, K., Issa, E. B., and DiCarlo, J. J. (2019). Evidence
that recurrent circuits are critical to the ventral stream’s execution of core object
recognition behavior. Nature neuroscience, 22(6), 974.

Kern, S., Müller, S. D., Hansen, N., Büche, D., Ocenasek, J., and Koumoutsakos, P.
(2004). Learning probability distributions in continuous evolutionary algorithms–
a comparative review. Natural Computing, 3(1), 77–112.

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T. (2018).
Stdp-based spiking deep convolutional neural networks for object recognition.
Neural Networks, 99, 56–67.

Kietzmann, T. C., Spoerer, C. J., Sörensen, L. K., Cichy, R. M., Hauk, O., and
Kriegeskorte, N. (2019). Recurrence is required to capture the representational
dynamics of the human visual system. Proceedings of the National Academy of
Sciences, 116(43), 21854–21863.

Kintel, M. and Wolf, C. (2011). Openscad, the programmers solid 3d cad modeller.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105.

Kuffner, J. J. and LaValle, S. M. (2000). Rrt-connect: An efficient approach to
single-query path planning. In Proceedings 2000 ICRA. Millennium Conference.
IEEE International Conference on Robotics and Automation. Symposia Proceed-
ings (Cat. No. 00CH37065), volume 2, pages 995–1001. IEEE.

74

Bibliography

Li, Y., Wang, Z., Midya, R., Xia, Q., and Yang, J. J. (2018). Review of memristor
devices in neuromorphic computing: materials sciences and device challenges.
Journal of Physics D: Applied Physics, 51(50), 503002.

Lillicrap, T. P. and Santoro, A. (2019). Backpropagation through time and the
brain. Current opinion in neurobiology, 55, 82–89.

Liu, S.-C. and Delbruck, T. (2010). Neuromorphic sensory systems. Current opinion
in neurobiology, 20(3), 288–295.

Long, L. and Fang, G. (2010). A review of biologically plausible neuron models for
spiking neural networks. In AIAA Infotech@ Aerospace 2010, page 3540.

Maass, W. (1997). Networks of spiking neurons: the third generation of neural
network models. Neural networks, 10(9), 1659–1671.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
and Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602.

Mozafari, M., Kheradpisheh, S. R., Masquelier, T., Nowzari-Dalini, A., and
Ganjtabesh, M. (2018). First-spike-based visual categorization using reward-
modulated stdp. IEEE Transactions on Neural Networks and Learning Systems.

Mozafari, M., Ganjtabesh, M., Nowzari-Dalini, A., Thorpe, S. J., and Masquelier,
T. (2019). Bio-inspired digit recognition using reward-modulated spike-timing-
dependent plasticity in deep convolutional networks. Pattern Recognition, 94,
87–95.

Nurse, E., Mashford, B. S., Yepes, A. J., Kiral-Kornek, I., Harrer, S., and Free-
stone, D. R. (2016). Decoding eeg and lfp signals using deep learning: heading
truenorth. In Proceedings of the ACM International Conference on Computing
Frontiers, pages 259–266. ACM.

Otte, S., Zwiener, A., Hanten, R., and Zell, A. (2016). Inverse recurrent models–an
application scenario for many-joint robot arm control. In International Confer-
ence on Artificial Neural Networks, pages 149–157. Springer.

Otte, S., Schmitt, T., Friston, K., and Butz, M. V. (2017a). Inferring adaptive goal-
directed behavior within recurrent neural networks. In International Conference
on Artificial Neural Networks, pages 227–235. Springer.

Otte, S., Zwiener, A., and Butz, M. V. (2017b). Inherently constraint-aware con-
trol of many-joint robot arms with inverse recurrent models. In International
Conference on Artificial Neural Networks, pages 262–270. Springer.

75

Bibliography

Otte, S., Hofmaier, L., and Butz, M. V. (2018). Integrative collision avoidance
within rnn-driven many-joint robot arms. In International Conference on Artifi-
cial Neural Networks, pages 748–758. Springer.

Paugam-Moisy, H. and Bohte, S. (2012). Computing with spiking neuron networks.
Handbook of natural computing, pages 335–376.

Prodromakis, T. and Toumazou, C. (2010). A review on memristive devices and ap-
plications. In 2010 17th IEEE International Conference on Electronics, Circuits
and Systems, pages 934–937. IEEE.

Rinzel, J. (1990). Discussion: Electrical excitability of cells, theory and exper-
iment: Review of the hodgkin-huxley foundation and an update. Bulletin of
Mathematical Biology, 52(1), 3–23.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016).
Mastering the game of go with deep neural networks and tree search. nature,
529(7587), 484.

Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural networks through
augmenting topologies. Evolutionary computation, 10(2), 99–127.

Swetham, T., Reddy, K. M. M., Huggi, A., and Kumar, M. (2017). A critical review
on of 3d printing materials and details of materials used in fdm. Int J Sci Res
Sci Eng Technol, 3, 353–361.

Tomassini, M. (1999). Parallel and distributed evolutionary algorithms: A review.

Vandesompele, A., Walter, F., and Röhrbein, F. (2016). Neuro-evolution of spiking
neural networks on spinnaker neuromorphic hardware. In 2016 IEEE Symposium
Series on Computational Intelligence (SSCI), pages 1–6. IEEE.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung,
J., Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., et al. (2019). Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, pages 1–5.

Werbos, P. J. et al. (1990). Backpropagation through time: what it does and how
to do it. Proceedings of the IEEE , 78(10), 1550–1560.

Wong, K. V. and Hernandez, A. (2012). A review of additive manufacturing. ISRN
Mechanical Engineering, 2012.

Xiong, W., Wu, L., Alleva, F., Droppo, J., Huang, X., and Stolcke, A. (2018).
The microsoft 2017 conversational speech recognition system. In 2018 IEEE
international conference on acoustics, speech and signal processing (ICASSP),
pages 5934–5938. IEEE.

76

Bibliography

Zhao, T., Ma, X., Ma, H., and Wang, Y. (2018). Happier: Hierarchical polyphonic
music generative rnn.

Zucker, M., Ratliff, N., Dragan, A. D., Pivtoraiko, M., Klingensmith, M., Dellin,
C. M., Bagnell, J. A., and Srinivasa, S. S. (2013). Chomp: Covariant hamilto-
nian optimization for motion planning. The International Journal of Robotics
Research, 32(9-10), 1164–1193.

77

Selbständigkeitserklärung
Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbständig und nur
mit den angegebenen Hilfsmitteln angefertigt habe und dass alle Stellen, die dem
Wortlaut oder dem Sinne nach anderen Werken entnommen sind, durch Angaben
von Quellen als Entlehnung kenntlich gemacht worden sind. Diese Masterarbeit
wurde in gleicher oder ähnlicher Form in keinem anderen Studiengang als Prüfungs-
leistung vorgelegt.

Ort, Datum Unterschrift

	1 Introduction
	2 Foundations
	2.1 Network Model
	2.2 Back-Propagation Through Time
	2.2.1 Error Gradients for LIF Neurons
	2.2.2 Error Gradients for ALIF Neurons
	2.2.3 Error Gradients for Output Synapses
	2.2.4 Error Gradients for Network Inputs

	2.3 E-Prop
	2.3.1 Eligibility Traces for LIF Neurons
	2.3.2 Eligibility Traces for ALIF Neurons
	2.3.3 E-Prop 1: Learning Signals through Random Feedback Connections
	2.3.4 Error Gradients for Network Inputs
	2.3.5 E-Prop 2 based Input Errors

	3 Emergence of STDP in E-Prop based Gradients
	3.1 Izhikevich Neuron
	3.2 STDP-LIF Neuron

	4 Predictive Forward Model
	4.1 Methods
	4.1.1 Implementation
	4.1.2 Input Encoding
	4.1.3 Training

	4.2 Results
	4.2.1 Training
	4.2.2 Input Encoding
	4.2.3 Accuracy
	4.2.4 Realistic Simulation

	5 Inference
	5.1 Methods
	5.1.1 Back-Propagation Through Time
	5.1.2 Biologically Plausible Inference
	5.1.3 Direct Inverse Model

	5.2 Results
	5.2.1 BPTT based Inference
	5.2.2 E-Prop based Inference
	5.2.3 Direct Inverse Model

	6 Robot
	7 Conclusion and Future Work
	Abbreviations
	Bibliography

