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Abstract. In this paper, we demonstrate that goal-directed behavior
unfolds in recurrent spiking neural networks (RSNNs) when intentions
are projected onto continuously progressing spike dynamics encoding the
recent history of an agent’s state. The projections, which can either be
realized via backpropagation through time (BPTT) over a certain time
window or even directly and temporally local in an online fashion using
a biologically inspired inference rule. In contrast to previous studies that
use, for instance, LSTM-like models, our approach is biologically more
plausible as it fully relies on spike-based processing of sensorimotor expe-
riences. Specifically, we show that precise control of a flying vehicle in a
3D environment is possible. Moreover, we show that more complex men-
tal traces of foresighted movement imagination unfold that effectively
help to circumvent learned obstacles.

Keywords: Recurrent spiking neural networks · active inference · tem-
poral gradients

1 Introduction

Recent progress in the field of reinforcement learning (RL) has gained huge at-
tention for learning to play various video games, most notably from the atari
console, and more recently even complex strategic online multiplayer games [10,
9, 11]. While these results are impressive, the used training algorithms like proxi-
mal policy optimization [14] or similar model free RL approaches require tremen-
dous amounts of learning time (typically thousands of years of simulated learning
episodes). This is neither very efficient nor biologically plausible. Moreover, these
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approaches do not foster a deeper understanding of the task at hand. In con-
trast, cognitive science research, and in particular theories of predictive coding
and active inference, suggest that our brain learns a predictive understanding of
the world [4, 6, 7].

Previous research already explored how the active inference principle can be
implemented in predictive recurrent neural networks (RNNs) to realize the emer-
gence of goal-directed behavior, planning, and environmental interaction [13, 5,
3, 12]. This is achieved as follows: First, a temporal forward model of a system of
interest is learned, typically with an LSTM-like RNN [8], from temporally causal
streams of available sensorimotor information. Second, motor signals are inferred
on-the-fly by backpropagating intentions (such as desired system states) in form
of prediction error-induced gradient signal through continuously adapting un-
rolled imaginations of the anticipated future system dynamics. While such RNNs
are a rough simplification of real biological neural networks, they can be trained
effectively by using backpropagation through time (BPTT). Recent progress in
research on more biologically plausible spiking neural networks (SNNs), how-
ever, enables the training of SNNs end-to-end with a biologically more plausible
learning rule, called e-prop, which comes close to the performance of BPTT [2].

Of particular interest for this paper is a variant of recurrent SNNs (RSNNs),
which is referred to as a long short-term spiking neural network (LSNN) [1]. An
LSNN consists of two types of spiking neurons: common leaky integrate and fire
(LIF) neurons and adaptive LIF (ALIF) neurons. With an adaptive threshold
that effectively regulates the firing rates of the latter, they can act as data and
gradient highways fostering long-term influences on the network dynamics. In
fact, LSNNs unfold impressive learning capabilities which are approaching, and
in some cases even surpassing, the performance of LSTMs [1, 2, 16].

For our purposes, the e-prop [2] rule is also highly relevant, as it is ideal for
continuous online learning scenarios. E-prop is based on a factorization of the
gradient computation into an error-depending learning signal and an activation-
depending eligibility trace. While the former is a time-local approximation of the
full error signal, the latter can be computed forward in time along the regular
forward pass of the network. Thus, e-prop does not require temporally backwards
error signal propagation, as standard BPTT does.

In this paper, we bring together active inference-inspired behavior generation
and biologically plausible SNNs. Specifically, we demonstrate that goal-directed,
anticipatory behavior can emerge from projecting intentions through continu-
ously unfolding spike dynamics onto motor inputs.

2 Action Inference in Recurrent Spiking Neural Networks

Establishing adaptive, goal-directed behavior in a continuous, dynamic control
scenario with RSNNs involves essentially two aspects. First, a temporal forward
model, that is, a neural approximation of the dynamical system of interest, is
learned. Second, action sequences are inferred by means of a goal-based loss
function.
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2.1 Dynamical System Formulation

We assume a controllable discrete-time dynamical system with time-dependent
system states. We follow the formalization from [12, 13] in this section. We fur-
thermore assume that the states are basically separated into perceivable states
σt ∈ Rn and unobservable (hidden) states ωt ∈ Rm. The system’s dynamics
can be influenced via k control commands denoted by xt ∈ Rk. The next sys-
tem state (σt+1,ωt+1) is determined by a (possibly unknown) state transition
function

(σt,ωt,xt)
Φ7−−→ (σt+1,ωt+1), (1)

which models the forward dynamics of the system. As this process unfolds recur-
sively over time, the next system state depends not only on the current control
inputs, but also, in principle, on the entire state history. It is the learning task of
the neural forward model to approximate Φ given the current state σt and cur-
rent control commands xt, as well as an internal representation aggregated from
the previous system state history {σ1,σ2, . . . ,σt−1} and corresponding motor
commands {x1,x2, . . . ,xt−1}. Since the neural forward model cannot directly ac-
cess the unobservable statesωt of the system, we will see that our system learns
to approximate the missing computational components sufficiently well and thus
becomes able to infer goal-directed actions by means of model-predictive control.

2.2 LSNN Forward Model

For learning Φ, we use an LSNN architecture with only one single recurrent
hidden layer. We directly inject real valued inputs without any explicit spike
encoding, which worked best in preliminary experiments. The hidden layer is
composed of both LIF and ALIF neurons in an one-to-one ratio. It should be
noted that the original formulation of LSNNs comes from [1]. In terms of nota-
tion details, however, the equations in this paper are aligned with [15] (which
additionally offers details on the derivation of BPTT for SNNs with LIF and
ALIF neurons). We calculate the activation of the hidden neurons as presented
in the following:

LIF activation

vtj = αvt−1j +
∑
i

win
i,jx

t
i +
∑
j′

wrec
j′,jz

t−1
j′ − z

t−1
j vthr (2)

ztj = Θ
(
vtj − vtthr

)
(3)

ALIF activation

vtj = αvt−1j +
∑
i

win
i,jx

t
i +
∑
j′

wrec
j′,jz

t−1
j′ − z

t−1
j vt−1j,thr (4)

atj = ρat−1j + zt−1j (5)
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vtj,thr = vthr + ζatj (6)

ztj = Θ
(
vtj − vtj,thr

)
(7)

The voltage vj of a neuron is modeled as an exponentially decaying sum over
the weighted inputs (with the leakage rate α), which gets reset after a spike
in zj occurs by subtracting the value of the spike threshold. For LIF neurons
the threshold vthr is constant. For ALIF neurons an adaptive threshold vj,thr is
used, which depends on the individual spiking activity of the neurons. Due to
this behavior—and its formal structure in particular—ALIF neurons act as data
(as well as gradient) highways able to bridge even large temporal gaps, which is
essential when confronted with long data sequences [1]. For both LIF and ALIF
neurons, the spike output is computed using the non-differentiable Heaviside
function denoted by Θ.

The output layer of the network consists of leaky readout neurons, which are
modeled according to Equation (2) without the reset term. The entire network is
trained using either BPTT or e-prop using the mean squared error (MSE) loss.

2.3 Motor Inference Principle

The inference process uses a sufficiently trained forward model in order to infer
control commands by means of BPTT or an e-prop inspired inference algorithm.
For this purpose we define a prospective temporal horizon, which determines over
how many time steps we will unroll our future projections. During the future
projections the network computes in closed loop, that is, it feeds itself with its
own predictions of the future development of the perceivable system states. For
this, we first randomly initialize a vector of future control commands with the
length of the chosen temporal horizon. The other inputs are then based on the
network’s predictions.

Using this setup, which is visualized in Figure 1, the network calculates for
each imaginary future time step a prediction of the perceivable system state
given the used motor commands. By using desired targets for these predicted
states, at each or only at the last imagined time step, we can backpropagate
a prediction error-based gradient signal through the unrolled network (through
time). When we map this gradient onto the control inputs, we end up with an
input gradient with respect to the discrepancy between the predicted system
states and the desired states. By using a gradient descent technique and by
repeating the described procedure, we can adaptively optimize the sequence of
control inputs effectively pushing the system towards the desired state. Note
that we always start from the saved latent state which was produced in the last
time step.

In the following, we formally derive the input gradient for the used LSNN
network model. Let us refer to the state of a particular neuron j at time step t
as stj . For LIF neurons this neuron state is one-dimensional and only contains
the voltage vtj , whereas for ALIF neurons it is two-dimensional and contains the
voltage vtj as well as the threshold adaption value atj :

stj,LIF
def
= vtj (8)
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Fig. 1. Illustration of the action inference procedure with LSNNs: Based on the current
state σt of the observed system (SYS), the network imagines the future development of
the states (σ̃t+1, σ̃t+2, . . .) given an initial motor sequence (x̃t, x̃t+1, . . .). During this
unrolling, the LSNN is fed with its own predictions. For the LSNN, however, each time
step consists of multiple sub time steps (as indicated by the small rectangles within
the LSNN nodes). In the last imagined time step, an intention ( ∗σt+5) is injected via a
prediction loss function, backpropagated through the unrolled imagined state sequence,
and eventually projected onto the control inputs. Using a gradient descent technique
and repeating this procedure multiple times within the current time step leads to an
adaption of the motor inputs. x̃t is executed to transition to the next time step, where
the same procedure starts again.

stj,ALIF
def
=
[
vtj atj

]>
(9)

The full gradient calculation requires all components within the network’s
computation chain to be differentiable. As mentioned earlier, however, the Heav-
iside function does not fulfill this requirement. To overcome this problem, Bellec
et al. [2] introduced a pseudo-derivative htj in place for the non-existing derivative
of the threshold function:

∂ztj
∂stj,LIF

def
= htj,LIF = λ max

(
0, 1−

∣∣∣∣vtj − vthrvthr

∣∣∣∣) (10)

∂ztj
∂stj,ALIF

def
=
[
1 , −ζ

]>
htj,ALIF =

[
1 , −ζ

]>
λ max

(
0, 1−

∣∣∣∣∣vtj − vtj,thrvthr

∣∣∣∣∣
)

(11)

where the dampening factor λ scales the steepness of the linear segments. With
help of this pseudo-derivative we can calculate the partial derivative of the loss
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with respect to stj :

δδδtj
def
=
∂E

∂stj
(12)

by applying the chain rule, which is done in the following for LIF and ALIF
neurons.

LIF state gradient

δδδtj =
∂E

∂ztj

∂ztj
∂vtj

+
∂E

∂vt+1
j

∂vt+1
j

∂vtj
=
∂E

∂ztj
htj + δδδt+1

j α (13)

ALIF state gradient

δδδtj =
∂E

∂ztj

∂ztj
∂stj

+
∂E

∂st+1
j

∂st+1
j

∂stj
=
∂E

∂ztj

 htj

−htjζ

+

αδt+1
j,v

ρδt+1
j,a

 (14)

Using these delta terms we can finally derive the input gradient:

∂E

∂xti
=
∑
j

∂stj
∂xti

∂E

∂stj
=
∑
j

win
i,jδδδ

t
j (15)

As a biologically more plausible and significantly more efficient error-based
inference rule, we propose an alternative for BPTT, which is inspired by e-prop
[2] and can be computed forward in time. Therefore, we expand the delta term
part of the input gradient and discard errors from the future in order to be able
to compute the error forward in time. We do this in three different styles:

Symmetric e-prop

∂E

∂xti
=
∑
j

win
i,jδδδ

t
j ≈

∑
j

win
i,j

∂E

∂ztj

∂ztj
∂stj

=
∑
j

win
i,jh

t
j

(∑
k

δδδtkw
out
j,k

)
(16)

Sign-based e-prop

∂E

∂xti
≈
∑
j

sgn(win
i,j)h

t
j

(∑
k

δδδtk sgn(w
out
j,k )

)
(17)

Random feedback e-prop

∂E

∂xti
≈
∑
j

sgn(win
i,j)h

t
j

(∑
k

δδδtkb
out
j,k

)
(18)
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For the symmetric case we calculate the input error of the network only as
one single backward-pass through the network, where δδδtk is the output error of
the output neuron k from the current sub time step. In the two other cases we
either use only the sign of the weights or the random feedback weights (boutj,k )
which were used for training with e-prop.

3 Experiments and Results

The experiments in this paper are based on a simulation of a simple flying vehicle
in a minimalistic 3D environment with gravity and air resistance. The vehicle,
which we refer to as rocket ball, is equipped with three rocket thrusters arranged
around the vehicle with an 120° angle to each other, while pointing downwards
in 45° angle. Each of the three thrusters can apply a force to the rocket ball
that acts in the respective opposite direction. With this setup we conduct three
different kinds of experiments which are described in the subsections below.

For measuring the inference performance of the rocket ball, we use an Eu-
clidean distance error specified as ||E||2 which measures the distance between
the center of the rocket ball and the center of the target sphere. Here an error
of 1 is equivalent to the rocket ball’s radius.

3.1 Short-term inference

In the initial set of experiments we tested the network’s ability to infer motor
commands in a simple setting where it has to steer the rocket ball to a desired
goal location within the simulated world. In order to propagate the discrepancy
between the currently predicted position delta and the distance to the target,
we use BPTT as a baseline and compare it to the different e-prop inspired,
biologically more plausible alternatives which all have the advantage that they
do not depend on errors from the past and thus can be computed forward in
time.

In Figure 2, one can see the results of this experiment, which is a fairly
simple task for a trained LSNN and can be accomplished in far less time steps
than those the network was trained on. Here the rocket ball quickly accelerates
towards the target, then starts to hover around it and by doing so it continues
to decrease its mean distance to the target.

The corresponding spike trains also show this behavior where the rocket ball
is already pretty close to the target after only 10 time steps and then needs
another 20 time steps to get really close to it. Another interesting observation
one can make from the spike train, is that the network seems to operate in two
cycles per (world) time step, such that two somewhat similar spike patterns
occur in each (world) time step.

We also found that the performance of the different proposed e-prop based
inference methods is astoundingly close to that of pure BPTT as can be seen
in the left plot of Figure 3. While the LSNNs trained and inferred with BPTT
initially manage to get closer to the target, after a while, once the rocket ball
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Fig. 2. Short-term inference (bottom) and corresponding spike-train (top) with
BPTT and a time window of 5 time steps. The rocket ball starts on the bottom of
the left side of the simulated world and quickly flies towards the desired goal location
in the top right side where it then hovers around the goal position.
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Fig. 3. Evaluation of different e-prop based inference algorithms: sym: symmetrical
feedback weights, error flows back through the network weights. sgn: feedback weights
are set to the sign of the corresponding weights. fbsgn: uses random feedback weights
for propagating back the error from the outputs to the hidden neurons and the sign
of the input weights to propagate it to the inputs. bptt: uses all network weights to
propagate the error through the network and through time into the inputs. The left plot
compares the median inference error for the different algorithms, using a network that
was trained with e-prop. The right plot compares the algorithms in a goal-directed
learning setup, where the network is trained continuously from scratch with e-prop
while performing inference. Here the graph shows the median errors together with the
upper and lower quantiles for 10 different runs and inference targets.

hovers around the target, their distance errors are the same as for the LSNNs
trained and inferred with e-prop.

3.2 Continuous Goal-Directed Learning

In the second set of experiments we train our model in an online learning setting,
where the rocket ball simulation continues indefinitely and the network has only
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the currently available experience in order to learn, which more closely resembles
the learning environment of an agent acting in the real world. More formally, we
use e-prop for training the LSNN in a single batch setting, where the network si-
multaneously trains its weights, while performing short-term motor inference for
a total of 100,000 (world) time steps. Like in the first set of experiments, addi-
tionally to BPTT based inference, we also test our different proposed biologically
plausible approaches, which are capable of online inference.

While the actual e-prop inference method had only a small impact on the
overall inference performance, with a pretrained LSNN, in the continuous set-
ting with goal-directed training only the symmetric e-prop variant (e-prop-sym)
managed to perform similar to BPTT (see Figure 3 right plot). Using random
feedback weights (e-prop-fbsgn) for propagating the inference error completely
failed to get the network anywhere close to the target, and also the sign-based
(e-prop-sgn) propagation did not reach the target in the simulated 100,000 time
steps. For random feedback weights, this might be due to the fact that they ini-
tially completely differ from the actual output weights, and only during training
potentially align themselves with the output weights. Also using the sign of the
forward weights for inference error propagation might not foster enough goal-
directed behavior to accelerate learning the forward model in the same way as
the actual weights do.

Fig. 4. Top: Emergence of a long-term trajectory within 7 time steps from a randomly
initialized trajectory. Bottom: Long-term inference with BPTT with a long-term
horizon of 30 time steps and a short-term horizon of 5 time steps. While the long-term
inference (blue trajectory) manages to plan around the obstacle, the short-term
inference (red trajectory) would collide with it. Once the rocket ball gets close to
the target, the long-term inference is disabled in order to allow for a greater precision
using only short-term inference.
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Fig. 5. Long-term inference with BPTT with a long-term horizon of 50 time steps and
a short-term horizon of 5 time steps. While the long-term inference (blue trajectory)
manages to plan around the obstacle, the short-term inference (red trajectory) would
collide with it. Once the rocket ball gets close to the target, the long-term inference is
disabled in order to allow for a greater precision using only short-term inference.

3.3 Long-Term Inference

The last kind of experiments challenge the network’s ability to look beyond the
immediate future and plan around obstacles. Therefore the closed loop operation
is unrolled over an extended period of time steps into the future using only the
network’s own predictions as inputs. In the last time step, a target for the final
prediction position deltas is given and backpropagated through time into the
motor inputs from the current time step. Additionally the rocket ball uses axis-
aligned distance sensors for which in each imagined time step zero is given as a
target for the distance sensor predictions, regularizing the imagined trajectory
in a way that the rocket ball avoids obstacles.

This setup then allows the network to perform long-term planning around
concave as well as convex obstacles as can be seen in Figure 4 and 5. Here these
planning trajectories spontaneously emerge, even when the initial endpoint of
the imagined trajectory is behind the obstacle (see Figure 4). This suggests that
the network has learned an internal model of the world including the obstacle
and that by using the imagined distance sensor values for avoiding the obstacle,
it can plan around it. This is not possible when using only short-term inference,
where the rocket ball plans to fly directly towards the goal and therefore ends up
stuck to the obstacle. Here the gradients towards the goal directly compete with
the gradients from the distance sensors, and due to the short planning horizon
the gradients from the distance sensors can not alter the trajectory in a way
that the endpoint of the planned trajectory ends up behind the obstacle.

While in the majority of simulations a trajectory tends to form around the
more challenging T-shaped obstacle and the rocket ball manages to navigate
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Fig. 6. Long-term inference with the T-shaped obstacle over 300 time steps, using a
long-term horizon of 50 and a short-term horizon of 1 time steps. The median inference
error (bold) is annotated with the individual runs (thin). While there are some fail
cases, the median error shows that usually the network manages to navigate around
the obstacle in within the first 50 time steps.

around it within the first 50 time steps, the long-term trajectories tend to be
unstable, which explains the number of fail cases in Figure 6.

4 Conclusion

We have shown that spiking neural networks, and LSNNs in particular, can be
trained to learn and memorize a temporal forward model of its environment,
including obstacles. Moreover, using a biologically plausible inference algorithm
inspired by e-prop, the LSNN can be used to induce short-term and long-term
goal-directed action inference in continuous settings—results that are almost
identical to BPTT in terms of accuracy, while having the advantage that they
do not require the expensive backpropagation of errors through time.

In a continued goal-directed learning setup, the most biologically plausible
methods could not compete with BPTT. However an e-prop variant using sym-
metric feedback weights also performed comparable to pure BPTT showing that
LSNNs can not only be trained with a biologically plausible alternative to BPTT,
they can also be employed in realistic online reinforcement learning setting, sim-
ulating the available experience of an agent in the real world. Here we demon-
strated that they can learn and employ goal-directed behavior without the need
for any kind of backpropagated error information from the future.

Apart from the more biologically plausible neural network processing mech-
anisms and local active inference techniques, more capable systems of this type
may be implemented in hardware highly efficiently, promising to yield a much
lower energy consumption [17]. We furthermore expect to enhance the LSNN
with regularization terms, to foster even sparser temporal encodings.
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