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Abstract

Multi-dimensional image data from modern microscopes allow studying the embryogenesis
of various model organisms. For instance, image analysis methods like automatic or semi-
automatic segmentation and tracking are used to analyze embryonic development by
extracting cell movement trajectories. Most available software tools, however, aren’t
capable of processing those trajectories interactively and intuitively in combination with
calculated features like cell division rate or trajectory length. In this thesis, a novel
Matlab VTK interface is developed in order to guide a knowledge discovery process within
large biological datasets. This interface extends Matlab about fast and interactive VTK
2D/3D views written in C++ to utilize both major advantages of Matlab and C++, namely
usability and speed. The generic design of this interface allows rapid prototyping of various
graphical user interfaces (GUIs) from Matlab through the use of wrapped C++ callbacks for
user interactions. This enables feature-based selections through Matlab plots, which are
directly linked to VTK views. The developed framework was successfully used to develop
customized GUIs that allow interactive trajectory selection, single-cell trajectory analysis
on maximum intensity projections as well as tracking error visualizations and corrections.
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Zusammenfassung

Multidimensionale Bilder aus aktuellen Mikroskopen ermöglicht es die Embryogenese
verschiedenster Modellorganismen zu studieren. Erreicht wird dies durch automatisches
bzw. teilweise automatisches Segmentieren und Tracken dieser Bilder, wobei Zellbewe-
gunstrajektorien generiert werden. Die meisten aktuellen Software Tools verfügen jedoch
nicht über die Möglichkeit diese Trajektorien interaktiv und intuitiv in Kombination mit
berechneten Eigenschaften wie Zellteilungsrate oder Trajektorienlänge zu bearbeiten. In
dieser Arbeit wird eine neue Matlab VTK Schnittelle entwickelt um die Wissensentde-
ckung in großen biologischen Datensätzen zu unterstützen. Die entwickelte Schnittelle
erweitert Matlab um in C++ geschriebene 2D/3D VTK Ansichten, um die jeweiligen Vor-
teile, Nutzerfreundlichkeit und Geschwindigkeit, von Matlab bzw. C++ zu nutzen. Der
allgemein gehaltene Entwurf dieser Schnittstelle erlaubt durch Rapid-Prototyping das
einfache erstellen verschiedenster graphischer Benutzerschnittellen (GUIs) in dem gekap-
selte C++ Callbacks aus Matlab heraus genutzt werden. Dies ermöglicht das erstellen von
Clustern basierend auf den Eigenschaften von Trajektorien welche in Matlab-Schaubildern
visualisiert werden. Mit Hilfe der entwickelte Schnittelle war es möglich verschiedene
anwendungsbezogene GUIs zu erstellen, die z.B. zur interaktiven Trajektorienauswahl, zur
Anzeige und Analyse einzelner Zellen inklusive ihrer mit Mikroskopbildern unterlegten
Trajektorien, sowie zur Anzeige und Korrektur von Trackingfehlern.
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1. Introduction

Since biologists explore nature through microscopes, their structure has largely developed
from simple optical microscopes [7] to a wide range of digital microscopes [38] that
rapidly produce large amounts of image data. These microscopes allow studying the
embryogenesis of various model organisms, which can be used for drug development by
examining the impact of certain drugs to the natural growth of embryos [1]. By running
such an experiment, the described microscopes can produce several terabytes of data [31].
It’s clear that these huge amounts of data need to be automatically or semi-automatically
processed to generate meaningful information [10].

1.1. Knowledge discovery within large biological datasets

The main target of this thesis is to guide a knowledge discovery process using full tracks
from a zebra�sh as a biological dataset. These full tracks are trajectories for each moving
cell of a developing embryo. They can be used to examine the impact of speci�c drugs or
developmental di�erences of mutant and wild type embryos by comparing the characteris-
tics from di�erent embryos. In order to discover knowledge, it is important to have an
interactive and intuitive user interface where a user can visualize and analyze the data. It
is as important to have a 3D view, as to have a 2D view in combination with the original
image data, since this is the data representation biologists are familiar with. Within these
di�erent views a user should be able to manually generate clusters by selecting subsets of
the visualized data. A selection from one view should automatically be generated within all
other linked views. Another important feature is the possibility to select clusters through
features like full track length or cell division rate. In order to have this functionality,
these features should be made visible in a feature plot which is also linked with all other
windows. A user should then be able to select clusters within the feature plot and also
�ne-tune them manually by selections in di�erent views.

1.2. From embryo to cell lineages

In order to generate the described full tracks, there are several steps involved which are
shown in Figure 1.1. This section describes those steps which are namely: embryo selection
and preparation, image generation with a microscope, followed by cell segmentation and
tracking.
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1. Introduction

Image acquis ition

Image storage, segmentation and tracking

Full track analysis and
visualization

Embryo preparationWorkflow
systems

Figure 1.1.: In order to generate full tracks, �rst select and prepare a suitable embryo.
Second run an experiment with a microscope to generate 3D time resolved
images. Third store and process these images to generate the desired full tracks,
which can then be analyzed and visualized (image adapted from [10]).
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1.2. From embryo to cell lineages

1.2.1. Why zebrafish are used in research

The full tracks used in this thesis originate from zebra�sh since they are widely used
as model organisms [26]. This is due to the fact that zebra�sh are small, translucent
freshwater animals [11]. They grow to an early larva within only 72 hours making it
feasible to explore their early stages of development within a reasonable time lapse [24].
Another valuable characteristic of zebra�sh is the fact, that they are fast and easy to
breed. They are fertile at an age of 3 months and females can lay up to 200 eggs per
mating [42]. But the outstanding feature which truly supports the written experiments are
genetically modi�ed zebra�sh that produce �uorescent proteins upon expression of speci�c
genes within their cells making them even better visible for microscopes [20]. Another
improvement is the treatment of phenylthiocarbamide at early stages of development to
suppress generation of pigments which enhances the transparency of the zebra�sh embryo
[22].

Figure 1.2.: Zebra�sh with chromophore calcein as �uorescence marker to highlight its
skeletal structure [8].

1.2.2. General recording techniques to generate in vivo time resolved images

Once a suitable embryo is chosen for the experiment, the next step is to generate in vivo
time resolved images. There are several di�erent types of microscopes which are capable
for this purpose.

Scanning electron microscope (SEM)
SEM generates images by scanning probes with a focused beam of electrons. Recent studies
showed that SEM can be also used for in vivo experiments [27]. The advantage of using
electrons in comparison to visible light in optical microscopes is that one can reach higher
magni�cation [15].

Confocal microscopy (CF)
CF is an optical microscope that uses a laser to scan the probe instead of illuminating
the whole probe by once. By using this technique, it increases the contrast within thick
probes [43, 41].

3



1. Introduction

Stimulated emission depletion (STED)
STED is a special optical micrsoscope which can break Abbe’s di�raction resolution limit
and thus reach a signi�cantly higher resolution than confocal microscopy [25].

Single-plane illumination microscopy (SPIM)
SPIM is an optical microscope that uses a thin plane of laser light to illuminate a speci�c
layer within a probe. As shown in Figure 1.3, the light that is used to stimulate the
�uorescence proteins within the embryo shines from an orthogonal angle with respect to
the detection objective. This setup allows to generate an image from a single thin layer
within the embryo [35, 21].

Sample

Objective lens

Fluo
res

cen
ce

Illumination

Focal plane

Light sheet

Excitation

Dete
ctio

n

Sample

Focal plane

Light sheet

Dete
ctio

Figure 1.3.: Single-plane illumination microscopy. A thin laser light-sheet stimulates the
�uorescent protein within a speci�c layer of the embryo [21].

1.2.3. Creating 3D time resolved images

In order to generate tracklets from time resolved images, it is necessary to have 3D images,
this are images of di�erent layers of an object at the same time point. This is the reason
why using SPIM is an optimal choice for generating such 3D time resolved images [23].
Thus, the full tracks used in this thesis are generated from SPIM images.

1.2.4. Cell segmentation and tracking

After the generation of the 3D time resolved images, the next step is to detect and track
the cells. This process of �nding speci�c regions within an image that represent living
cells is called cell segmentation. While there exists a wide range of algorithms capable
of this task [19], it is not trivial to develop one that is also capable of processing large
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1.2. From embryo to cell lineages

amounts of image data up to several terabytes in reasonable time [39].
After segmentation the next step is to track each cell within di�erent images over time
to generate a trajectory for each cell. Unfortunately, creating a perfect cell lineage is still
a di�cult task [12]. There exists a bunch of software tools to support a semi-automatic
segmentation and tracking process [12, 36, 34].

1.2.5. Interactive classification and knowledge discovery

The last step from Figure 1.1 is the classi�cation and the visualization of the full tracks
generated within the previous step. For this purpose one needs an adequate data represen-
tation, a 3D view of the full tracks for example. To do the actual classi�cation one needs
to divide the dataset into clusters, each representing a speci�c functionality or otherwise
de�ned region of interest. The clustering could be done manually through the visual data
representation, or better based on some calculated features like track length or movement
speed, which are already dividing the dataset in some way [37].
There are already some software tools which are partially capable of this sort of tasks as
shown in Table 1.1.

Feature based Connected feature Matlab interface Open source
clustering plots

Fiji - - unidirectional X
CATMAID X - - X
Mov-IT - - - X
Andrienko X X - -

Table 1.1.: Software tools for interactive clustering.

Fiji
Fiji focuses on image processing like semi-automatic segmentation and tracking. Although
it has a unidirectional interface to Matlab and 3D visualization, it lacks the feature based
group selection [36].

CATMAID
CATMAID is another bioinformatics tool which is specialized for semi-automatically
segmentation. CATMAID’s main focus are images of neuronal cells from which they
generate 3D representation of this cells [34].

Mov-IT
Mov-IT is a software designed for semi-automatic segmentation and tracking of cells over
time. The generated tracks can be viewed in 3D and groups can be manually selected, but
it has no feature based selection and no interface to Matlab [12].

5



1. Introduction

Andrienko
The Graphical User Interface (GUI) described by Andrienko et al. comes most close to the
desired functionality developed in this thesis. Their software is capable of connecting dif-
ferent data views including 3D views and feature plots, but their software isn’t compatible
with Matlab and also isn’t open source making it unfeasible for extensions [3, 2].

1.3. Targets of this thesis

As pointed out in Section 1.2.5, none of the existing software tools for interactive clustering
is capable of all requirements. For instance, none of the tools was really suitable for use
with Matlab. So there was a need for developing a custom software.

1.3.1. Main targets

The main targets, which are necessary to overcome the existing limitations, are listed
below:

Matlab compatibility
Having Matlab compatibility as requirement is due to the fact that it is widely used by
researchers for its powerful data processing capability [18]. Additionally, the tracking
algorithm used to generate the full tracks used within this thesis is written in Matlab code
[40].

3D and 2D data representation
besides a 3D view, the software should be capable of presenting the data in 2D along with
the original image data, since this is the data representation biologists are used to.

Interactive clustering
Within di�erent views a user should be able to generate clusters manually through selec-
tions.

Connected views
Clusters from di�erent views that represent the same sub dataset should be connected in
a way, that updating a cluster in one view also updates all connected once.

Feature based clustering
Another important ability that half of the programs shown in Section 1.2.5 lack, is the
possibility to select clusters through features like full track length or cell division rate.

Feature plot
In order to be able to select clusters through features, these features should be made visible
in a feature plot which is also linked with all other windows. A user should then be able to

6



1.3. Targets of this thesis

select clusters within the feature plot and also �ne tune them manually through selections
within other views.

1.3.2. Additional targets

In addition to the main target, the software itself should be compatible to already used
methods. This is the origin of the written requirement for Matlab compatibility. Since
features could already be calculated and visualized through Matlab there is no need to
reinvent this [32]. On the other hand, Matlab’s 3D plots are not capable of handling large
datasets interactively. Thus, the new software should extend Matlab about a bidirectional
interface to allow the described connections between feature plots and other views.
Other sub targets are:

Easy extensibility
The software should be modular to allow modi�cations and extensions.

Handle large datasets
As mentioned above, the software should be interactive and still responsive when working
with large datasets.

Controlled by Matlab
Since the experience of the developer of the existing code lies on the Matlab side, the
GUI should optimally be build using Matlab code and only outsource heavy tasks like 3D
visualization.

7





2. Methods

As shown in the last chapter, there was a need to develop a new software capable of
extending Matlabs 3D visualization ability. The already used method to interactively
explore large 3D data from Matlab was to export those data to a Visualization Toolkit
(VTK) �le and then open this �le with Paraview (a user interface based on VTK to visualize
large 3D data). Although this method was applicable for just visualizing the full tracks in
3D there was no option to export selected clusters from Paraview back to Matlab.

2.1. Programming language and library choices

In the early stages of development there were several options: One could go with the
Paraview solution and extend it about an bidirectional interface to Matlab. Another option
would be to develop an own user interface based on the VTK library. At �rst the Paraview
solution seemed to be the easiest. However, it turned out that Paraview’s plugin system
was mainly focused on �le access. So a stand-alone VTK application was the way to go.
Since Matlab already has a bidirectional Python engine and VTK has a Python interface,
the �rst few tests were written in Python. During those tests several drawbacks occurred.
First not all functionality of the VTK C++ interface is also present within the VTK Python
interface, second Python turned out to be noticeably slow with the reduced test dataset.
So �nally, C++ was selected as the programming language along with the VTK library to
build the external software component. This not only gave a huge speed improvement
within the simple tests, it also enabled the use of all VTK functionality since VTK is also
written in C++.

2.2. Project organization and so�ware build methods

After some initial tests with Matlab’s C++ interface (Mex interface), the actual software
development started. In order to easily handle the VTK dependency during the software
build process, the CMake build system [30] was used, since it’s also used to build the VTK
libraries. With CMake one could just include VTK as an dependency and it automatically
detects the VTK library installation. Additionally, git was used as version control system
[28]. As working title for the Matlab VTK interface the name Simple VTK Interface (SVI)
was chosen. Simple in this context refers to the complex functionality provided by VTK,
which makes it hard for developers understand it. SVI on the other hand should be as
powerful as needed, but also as simple to use as possible.

9



2. Methods

2.3. So�ware component models with design patterns

This section will show the detailed software models used to build the actual Matlab
VTK interface. To help understanding the di�erent components, the main software parts
are visualized using Uni�ed Modeling Language (UML) diagrams [5]. Additionally the
structure of most software parts are partially or directly based on well known design
patterns [14]. For a complete list of the used design patters see Appendix A.3.

2.3.1. The basic Matlab user / developer interface

The basic functionality of the Matlab VTK interface is to create a 3D view in a separate
window and to display Matlab speci�c 3D data in it, just like with a normal Matlab �gure.
To achieve this functionality, an interface developer uses the classes shown in Figure 2.1.
The SVI class is implemented using the Singleton design pattern [9] encapsulating the very
basic functionality like creating windows and properties. The SVIWindow, SVIProperties,
SVIID and SVIRawIDSelection are best described by the Wrapper design pattern [9], en-
capsulating the underlying C++ data types. These classes are the four basic data types
needed to create and control 3D visualizations, which consist of points or lines. The �rst
thing needed to display data is a window represented by SVIWindow. This window can have
di�erent properties (represented by SVIProperties) like background color, size, camera
position and so on. Once a window is created, a user can add data to it. This data have to
be in a speci�c Matlab format to be accepted. For instance, a three dimensional vector can
represent a set of 3D lines: NxMx3 with N being the number of lines with M points each,
for each point x, y and z coordinates.
The type and properties parameter from the add method can be omitted to use default
values for them. After execution, the add function returns an SVIID object representing
the visualization of the added data. Through this ID, the user can now request and change
properties like color, opacity and others.
Another major functionality is that from each SVIID one can create a selection by calling
the addSelectionType function. Selections are either point or line selections.
Through a built-in selection mode, a user can de�ne a frustum (basically a rectangular
prism) by drawing a rectangle on a window. This frustum is then used to create a subset
of the data represented by the SVIID, the selection was created from.
The SVISelectionCallbackProcessor and the SVIInteractionCallback are wrapped in-
terfaces to create custom GUIs and allow rapid prototyping by handling user interactions
and processing selections from Matlab. These interfaces are described in Section 2.3.11
and 2.3.6.

2.3.2. Connecting to C++, Matlabs Mex interface

To utilize the speed of natively compiled languages like C, C++ or Fortran, Matlab has a
so-called Mex interface that allows developers to write programs in the desired language
and use them as plug-ins. Matlab therefore provides an interface that one has to implement.
This interface actually is a single function, which can return and can be called from Matlab
with arbitrary data. The data is provided in Matlabs native C / C++ / Fortran format, and
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2.3. Software component models with design patterns

SVI

+addWindow()
+getWindow(windowNumber)
+createObjectProperties()
+createSelectionProperties()
+createWindowProperties()

SVIID

+getProperties()
+connect(id)
+update()
+addSelectionType(type, properties, window)
+toMatlab()
+getIDs()
+enableCallback()
+getWindow()

SVIWindow

+add(object, type, properties)
+getProperties()
+connect(window)
+update()
+enableCallback()

SVIProperties

+getKeys()
+getValues()
+get(key)
+set(key, value)

SVISelectionCallbackProcessor

SVIInteractionCallback

SVIRawIDSelection

+merge(selection)
+subtract(selection)
+intersect(selection)
+modeOperation(selection)

main component

sub component

interface

Figure 2.1.: SVI represents the plain C++ wrapper, when a Matlab object gets added to a
SVIWindow it creates a SVIID as its representation. Windows and IDs can have
a set of properties represented by the SVIProperty class. SVIRawIDSelection
represents the visible IDs of an object or selection.

can be read / created through some helper functions. Finally, the written code can be
compiled with Matlabs built-in Mex compiler. Since this Mex compiler e�ectively produces
a shared library it can be circumvented by explicitly providing Matlabs Mex headers. This
was done to integrate the compilation of the Mex �le into the CMake build process. Once
a Mex �le is created it can be called from Matlab by using the Mex �lename as a function
name.
Within the native code the developer is free to create several threads, but he must not
use any Matlab helper functions outside the thread from which Matlab called the Mex
interface function. Thus, the Mex interface is only unidirectional from Matlab to native
code. It is not intended to call Matlab from native code after the Mex interface-function
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has returned. In addition, just holding execution within the Mex interface function is not
an option since Matlab will also hold until the function returned.

2.3.3. Achieving a bidirectional connection from and to Matlab

As mentioned in Section 2.3.2, Matlab does not natively support a bidirectional interface
to C++, so there was a need to circumvent this. Fortunately, Matlab supports local TCP
sockets with custom callbacks that get called once data is available.
So it was surprisingly easy to open a local TCP socket within Matlab, register a callback,
and connect to this socket from a separate thread from within the Mex code. Figure 2.2
shows this setup. This bidirectional interface is mainly needed to react to user interactions
from within Matlab.
As mentioned in Section 1.3.1, an important feature of this VTK-Matlab interface is to
connect selections from di�erent visualized objects, so that they can react to changes of
one another. But doing so creates a huge amount of possible interactions between them.
So it wasn’t feasible to encode all these possible interactions directly within the interface.
Instead, the actual selection arithmetic is outsourced through callbacks. By handling these
callbacks from Matlab, developers have the possibility of easily creating new interactions
between selections, therefore rapidly creating new GUIs without the need of recompiling
the whole interface.
Figure 2.3 shows the general process of selection processing within Matlab: Once a user
selects something in a VTK window, the created selection data including the data of all
connected selections gets handled over to the SVIMatlabSelectionProcessor.
The SVIMatlabSelectionProcessor then informs Matlab over the local TCP-server. Matlab
then calls the Mex function (from the ConcreteSelectionProcessor) which returns the
selection data to Matlab. Within Matlab the selection interactions can be processed and
even Matlab speci�c calculations like updating a plot with similar data can be preformed.
After processing the selections, Matlab again calls the Mex function with the result of
the selection calculation, telling the SVIMatlabSelectionProcessor to return from its
callback. To handle even more control over to Matlab a developer can register Mouse
or Key interaction callbacks, which then also get sent to Matlab and handled by the
SVIInteractionCallback.
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2.3.4. Basic C++ interface

In order to keep the connection between Matlab and C++ clean and simple, it was decided
to separate the VTK dependency within a C++ interface. This interface is completely
independent from Matlab and thus allows reusing the code for possibly other interfaces
to other languages. To also make the compilation independent from Matlab, the C++
interface is built as a static library during the compilation process. This also allows Matlab
independent testing of the whole VTK functionality.
The main functionality is exposed through the abstract class SimpleVtkInterface which
allows creation and connection of windows as well as adding, removing and connecting
objects and selections. To be independent from VTK headers, some simple data structures
are provided to construct the equivalent of a vtkPolyData object (VTK’s main data rep-
resentation). Just like in VTK a SVIPolyData object consists of so-called SVICells which
consist of SVIPoints. In VTK, cells are used to represent dependent 3D points like lines or
simple polygons. In order to choose the speci�c visualization of the data an SVIDataType

object is used in SVIPolyData to distinguish between lines and points. In order to e�ec-
tively create dependencies between the points or cells of di�erent objects, each SVIPoint

and each SVICell has its own ID. This ID is used within the selection processing, for
example to select same parts from di�erent objects. The SVIRawIds class is used to store
the currently visible point and cell IDs of an object or selection and can be generated by
calling the getIds function.
Adding objects and creating selections works petty similar to the Matlab interface: by
calling add or addSelectionType one gets an SVIId object, which can then be used in other
functions. Thus, the SimpleVtkInterface class as shown in Figure 2.4 acts just like the
Factory Method design pattern [14], encapsulating the creation process of the di�erent 3D
visualizations represented by the SVIId class.
As in Matlab, the SVIProperties class controls the appearance of windows, objects and
selections. Also, the SVISelectionCallbackProcessor and the SVIInteractionCallback

are the C++ equivalent interfaces to create custom GUIs and allow rapid prototyping.
These interfaces will be explained in detail later on.

2.3.5. VTK’s single thread architecture and how to achieve multi-threading

A major problem that occurred during the start of this project was the fact that VTK is
not thread-safe, so VTK dependent code can’t be executed by several threads at the same
time. This alone could have been handled easily using some sort of locking mechanism
for thread synchronization. Unfortunately, OpenGL, the render library used by VTK,
also requires to be exclusively executed from the same thread. So there was the need of
developing something like a Producer Consumer design pattern [17] with one VTK thread
functioning as the Consumer getting synchronized requests form one or more Producer
threads. Figure 2.5 shows the general concept used in this work, which implements the
described pattern. To be able to interact with the VTK thread, one has to implement a
custom event loop by subclassing the VTK class which implements the described loop.
This is done in the SVIInteractor class, which subclasses the Linux and Windows speci�c
vtkRenderWindowInteractors. The reimplemented event loop in SVIInteractor handles
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SimpleVtkInterface

+addWindow()
+add(object, windowID, properties)
+get(id)
+remove(id)
+getPropertes(id)
+getIds(id)
+addSelectionType(id)
+connect(id1, id2)
+update(id)
+setSelectionCallback(id, callback)
+setInteractionCallback(id, callback)

SVIId

SVIProperties

SVIRawIDs

SVISelectionCallbackProcessor

SVIInteractionCallback

SVIDataType

SVIBasicPoint

SVIPoint

+id

SVIObject

SVICell

+id

SVIPolyData

SVIMain

main component

sub component

interface

Figure 2.4.: The C++ library interface is used to encapsulate the VTK functionality. The
interface methods are: creating windows, adding removing and connecting
objects and selections.

user events, mouse and keyboard events, just like VTK did, but also frequently checks
a message queue. This message queue is implemented by SVIMessenger and is used do
deliver interface commands, like adding a window or object, to the VTK thread.
As shown in Figure 2.6, once an interface method is requested, its speci�c call parameters
are saved within the SVISyncParameter class, then a message is sent informing the VTK
thread about the called interface method. Right after the message is sent, the main thread,
typically the Matlab thread, requests the return parameter from the SVISyncReturn class.
The SVISyncReturn class then blocks the main thread until the actual return parameter is
set by the VTK thread.
Figure 2.7 shows how the SVIMain class processes the actual interface call within the VTK
thread. This happens after the event loop implemented in SVIInteractor receives the
previously send message and then calls back to SVIMain.
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vtkWin32RenderWindowInteractorvtkXRenderWindowInteractor

SVIInteractor

+processMessage(message)

SVIMessenger

+sendMessage(message, args)
+receiveMessage()

SVIMessage

+message
+args

SVIMain

+sendMessage

SVISyncParameter

+inform

SVISyncReturn

context switching components

VTK super classes

processing components

Figure 2.5.: Achieving multi-threading by using messages and synchronization structures.
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2.3.6. How to customize VTK’s visualization model

To actually represent a window, the SVIWindow class is used. It stores all visualized objects
and selections and handles camera and rendering requests. It also holds a
SVIInteractorStyle object, which is a subclass of VTK’s interaction handling class
vtkInteractorStyleRubberBandPick as shown in Figure 2.8. This VTK class comes with
a built-in rubber band frustum selection and provides abstract methods to customize the
behavior of user actions like keyboard and mouse inputs.
Through the SVIInteractionCallback, a developer can register an own callback and will
then be informed about the various user actions.

vtkInteractorStyleRubberBandPick

SVIInteractorStyle

SVIInteractionCallback

+OnMouseClick()
+OnKeyPress()
+OnMouseWheelForward()
+OnMouseWheelBackward()

SVIWindow

main component

sub component

interface

Figure 2.8.: Allow developers to react to user events by implementing the
SVIInteractionCallback interface.

2.3.7. First dra� of visualizing objects and selections

After having a single VTK thread and a render window representation, the next step was
to actuality visualize something. This section describes why the �rst approach of doing so
failed by getting to vast and complex.
In the beginning of this project, there was only the need for visualized objects and selec-
tions on these objects. Figure 2.9 shows the �rst approach modeling them. Since VTK
has a very good abstraction layer, a visualized object can be represented by an abstract
vtkDataObject and its properties. To create a selection from a VTK object one needs a
frustum. By applying several VTK �lters one can then create di�erent types of selections,
like point or line selections. So it seemed to be the easiest solution, to de�ne a selection as
a pipeline of abstract VTK �lters.
As mentioned in Section 1.3.1, it is important to connect selections from di�erent visualized
objects to form more powerful GUIs. With the existing classes from Figure 2.9 this wasn’t
quite easy to do.
As shown in Figure 2.10 each VisualizedObject got a ConnectedWindow object which itself
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VisualizedObject vtkDataObject

SVISelection

11

1

1

vtkAlgorithm11..*

SVIObject
1 1

main component

sub component

interface

Figure 2.9.: Simple concept for handling visualized objects and selections, without much
relations between them.

VisualizedObject vtkDataObject

SVISelection

11

1

1

vtkAlgorithm11..*

SVIObject
1 1

UpdateMessage

1

1
+informs

ConnectedWindow

1

1..*

Connections

1

1..*

1

0..*

1

1

main component

sub component

interface

Figure 2.10.: The �rst approach failed by getting to complicated and messy when trying to
extend the simple concept about connected selections, connected windows
and a hardly comprehensible and understandable update mechanism.

stores several VisualizedObject from a di�erent window. Several ConnectedWindows are
pooled together within a Connections object.
Once a VisualizedObject gets updated it creates a UpdateMessage containing a refer-
ence to it so as information about the selection mode, to increase or subtract the selec-
tions. This UpdateMessage then gets delivered to all other VisualizedObjects listed in the
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Connections object. Not only creates this a circular dependency, also the code to connect
two VisualizedObjects objects was extremely di�cult to understand. Another pitfall was
that all selection arithmetic was directly encoded within the SVISelections class, which
made it in�exible and hard to understand since it had to mange di�erent selection modes
in combination with connected selections.

2.3.8. Second approach: Modeling connected objects through a single
instance

As shown in Section 2.3.7, there was a huge need for a redesign of the visualization objects
and selection encoding, something that takes into account that selections and windows
can be connected. To easily connect windows and selections, a class template called
SVICollection as shown in Figure 2.11 was introduced. Just like the Multiton design
pattern [29], this class controls the number of SVIBasicCollection instances through
the static attributes collections, instances and indexCounter in a way that when one
connects (merges) two instances they become one instance. This removes the previous
struggle, where each VisualizedObject holds a list of its connections. Now there is only
one list of objects which are connected to each other.
The state attribute of SVIBasicCollection was introduced to model the common state
shared by several connected selections.

SVIStatelessCollection

-objects

+add(object)
+contains(object)
+size()
+indexOf(object)
+get(index)
+remove(object)

OBJECT

SVIBasicCollection

-state

+getState()
+setState(state)

OBJECT
STATE

SVICollection

-collections
-instances
-index
-indexCounter

+add(object)
+contains(object)
+size()
+indexOf(object)
+get(index)
+remove(object)
+getState()
+setState()
+merge(collection)

OBJECT
STATE

main component

sub component

basic super class

Figure 2.11.: SVIBasicCollection models a collection of connected objects that share a
single state. SVICollection ensures that only one instance with the same
connected objects exists.
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2.3.9. The visualization pipeline

As mentioned in Section 2.3.7, the original design wasn’t very �exible to changes. To cir-
cumvent this a new design shown in Figure 2.12 was created based on the Pipes and Filters
design pattern [6]. The general idea of applying this pattern is to construct visualized
objects and selections from small and reusable parts to form a �exible and easy adaptable
system.

SVIBasicAlgorithm

#informOutputObservers()
+registerOutputObserver(algo)
+unregisterOutputObserver(algo)
+update()
+inputHasChanged()

SVIPartialAlgorithm

+getOutput()

Output

SVIAlgorithm

#isCached()
#hasInputChanged()
#getInput()
#doUpdate()
+requiresUpdate()
+setInputConnection(algo, index)
+setInput(args...)
+getOutput()

Output
Inputs...

SVIPipeline

+getAlgorithm(i)
+update()
+addAlgorithm(algo)
+forceUpdate()

setInputConnection
takes an
SVIPartialAlgorithm
as input

SVIVisualized

SVIVisualizedPolyData

SVIVisualizedSVIPolyData SVIPolyDataSelection

used component

sub component

interface

Figure 2.12.: New concept (Pipes and Filters design pattern [6]): creating small and reusable
components connected in a linear manner.

The SVIAlgorithm class is the abstract form of a �lter template that has several inputs and
exactly one output. Through the getOutput function one can retrieve the last calculated
output value. To calculate this output from the inputs, subclasses of SVIAlgorithm should
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implement the abstract doUpdate function.
Due to the fact that SVIAlgorithm is a class template and therefore one can’t create pointers
or references to it, the SVIBasicAlgorithm was introduced. This base class speci�es the
update method, which in SVIAlgorithm calls the doUpdate function at some point.
To complete the pattern, SVIPipeline is an abstract implementation of a pipeline con-
structed of several �lters (subclasses of SVIBasicAlgorithm). Once a pipeline gets updated
it sequentially updates all its containing algorithms to calculate the �nal result of the last
algorithm. However, updating all �lters of a pipeline, is not always necessary. It is easy to
imagine an example where a selection processing �lter needs to recalculate its output, but
a �lter that just applies properties, like colors and opacity, doesn’t need to run. Inspired
by the Lazy Load pattern [13] a SVIAlgorithm can be a cached algorithm, meaning that
the update function will only call doUpdate from the subclass if its really necessary, for
example when the input has changed, modeling some sort of lazy calculation. Figure 2.13
shows this concept.

inputHasChanged

isCached

SVIAlgortithm::update()

doUpdate

Figure 2.13.: Through lazy calculation a SVIAlgorithm only updates the output value if
the inputs have changed.

Another important part is that a �lter within the pipeline mostly directly depends on
the calculation of a previous �lter. To model this behavior, SVIPartialAlgorithm, a tem-
plate class specifying only the output of a �lter, was introduced. This allows to set
a SVIPartialAlgorithm as a dependency for a speci�c input. The function setInput-

Connection, which registers this dependency, then automatically registers itself by the
connected algorithm as an output observer [16], so that it will be informed when the
connected algorithm has calculated a new output. Figure 2.14 shows the general update
process for two algorithms connected in the described manner.
Once a SVIAlgorithm has called the doUpdate function of its subclass, it then informs all
output observers through the inputHasChanged function that they have to update them-
selves. An SVIAlgorithm that has to update itself then collects the outputs of its input
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SVIPipeline SVIAlgorithm1 SVIAlgorithm2

1 : update 2 : update
3 : doUpdate

4 : inform output observers

5 : inputHasChanged

6 :

7 :

8 : update

9 : getOutput

10 :

11 : doUpdate

12 :
13 :

pipeline

filter

Figure 2.14.: Once an SVIAlgorithm updates its output value, it automatically informs all
other SVIAlgorithms that depend on this output.

connections before calling the doUpdate function.
For a complete overview of the implementation of the Pipes and Filters design pattern see
Appendix Figure A.1.

2.3.10. Constructing visualized objects and selections as pipelines

As shown in Figure 2.12, the subclass SVIVisualized of SVIPipeline is the base class actu-
ally used for all visualizations (objects and selections). The class SVIVisualizedPolyData
is a specialization for VTK’s main data format vtkPolyData. SVIVisualizedSVIPolyData
and SVIPolyDataSelections are the actual implementations of visualized objects and
selections as a pipeline of SVIBasicAlgorithms.

Composition of visualized objects
The class SVIVisualizedSVIPolyData, which represents a visualized object, forms a pipeline
of the algorithms shown in Figure 2.15. The �rst algorithm gets a SVIPolyData object as
input and generates a vtkPolyData object as output. The second algorithm then creates
a vtkActor, which is VTK’s equivalent for a visible object. The last �lter then decides
whether the object should be rendered and if so it generates a render request.

Composition of selections
A selection needs as input a vtkPolyData object. The fact that the SVI2vtkPolyData-

Algorithm from SVIVisualizedSVIPolydata produces such an output, it can be used as an
input connection for the �rst algorithm of SVIPolyDataSelection. Modeling a selection
in this way leads to the fact that it will get automatically noti�ed if the visualized object
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SVI2vtkPolyDataAlgorithm

SVIVisualizedSVIPolyData SVIPolyData2ActorAlgorithm

SVIRenderAlgorithm

SVIPolyData

+input

+input

+input

SVIPipeline SVIPartialAlgorithm
vtkPolyData

main component

sub component

interface

Figure 2.15.: A visualized object consists of several SVIBasicAlgorithms.

changes.
The �rst algorithm of SVIPolyDataSelection takes as input a vtkPolyData. It also takes a
frustum created from the user selection on a window. From these two inputs, it calculates
the IDs which lies inside this frustum. The next �lter then takes these IDs and the IDs of
all connected selections and calculates the �nal IDs for this selection that should be visible.
The third �lter takes the IDs as input and again calculates a vtkPolyData object from it. The
last two algorithms are the same as used in SVIVisualizedSVIPolydata, which directly
demonstrates the reusability of the new design. The fact that the third algorithm produces
a vtkPolyData object representing the �nal selection, makes it possible to use a selection
as input for a new selection as shown in Figure 2.16. This feature could theoretically be
used to create a tree like selection structure, dividing a set of data from coarse-grained
groups to �ne-grain ones.

2.3.11. Allowing rapid prototyping through selection calculation

As described in Section 2.3.7, one pitfall in the �rst approach was that all selection
arithmetic was directly coded within the SVISelection class, making it hard to extend.
To circumvent this a Visitor design pattern [14] was introduced to separate the se-
lection arithmetic from the actual selection implementation and make it interchange-
able. Figure 2.17 shows the general structure of the implemented design pattern. The
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SVIPartialAlgorithm
vtkPolyData

SVIRenderAlgorithm

SVIPolyData2SelectionAlgorithm

SVISelectionCallbackAlgorithm

SVIPolyDataSelection

SVIPolyData2ActorAlgorithm

SVISelection2PolyDataAlgorithm

+input

+input

+input

+input

SVIPipeline

+input

main component

sub component

interface

Figure 2.16.: A selection consists of several SVIBasicAlgorithms starting with the
vtkPolyData output of a SVIPartialAlgorithm, which can be from a visu-
alized object or selection.

SVISelectionCallbackAlgorithm is the second algorithm of the SVIPolyDataSelection

pipeline described in Figure 2.16. Its input is a collection of connected selection IDs that
share a common state. This state consists of the actual IDs which are visible in each of the
connected selection.
The interface SVICollectionAlgorithm uses the SVICollection introduced in Figure 2.11
to create an abstract algorithm with a SVICollection as input. SVISelectionCallback-
Algorithm specializes the SVICollectionAlgorithm interface to use a SVICollection of
selection IDs. SVISelectionCallbackAlgorithm itself uses in its doUpdate function a
SVICallbackAlgorithmwhich is a generalized implementation of the Visitor design pattern,
where the SVICallbackProcessor is the generalized Visitor interface [14].
SVISelectionCallbackProcessor specializes this interface to take a SVICollection of
selection IDs and generate a new common state. Finally, SVIStandartSelectionProcessor
is the default Visitor, which supports basic selection arithmetic like increasing or decreasing
the common state about the nearly selected IDs.
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SVISelectionCallbackAlgorithm SVICallbackProcessor

SVISelectionCallbackProcessor

SVIStandartSelectionProcessorSVISelectionModeAlgorithm

SVICollectionAlgorithm SVICallbackAlgorithm

SVISelectionArithmeticAlgorithm

main component

sub component

interface

Figure 2.17.: The actual selection calculation is outsourced through the
SVISelectionCallbackProcessor interface, in order to allow rapid prototyp-
ing. The SVIStandartSelectionProcessor is the default implementation of
the selection processing.

2.3.12. Modeling properties of di�erent data types

As mentioned in Section2.3.1, the SVIProperties wrapper in Matlap provides an interface
to window, object and selection settings, like camera position, background color, opacity,
visibility, etc. All these properties are basically modeled as a key-value storage, where the
keys are Enums (a Enum is a set of unique identi�ers) and the values can have di�erent
types like int, double, etc. For each di�erent value type there is a di�erent Enum class
in order be able to determine the value type from the key. This simpli�es polymorphism
(using the same method name for di�erent actions, which are determined by the method
parameters). For example, using only the key to determine the return type of a get function.
Within the C++ interface, properties were �rst modeled in the single class SVIProperties
shown in Figure 2.18. Through the use of overloaded methods, one could easily set and
obtain di�erent types of properties. One must only write a set and get method for each
di�erent type and the C++ compiler chooses the right method at compile time.
However this model also had some pitfalls. First, since all property changes were directly
applied, a context switch into the VTK thread was always necessary. Second, a class
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PropertyObserver

+propertieChanged(property, value)

SVIProperties

-booleanProperties
-doubleProperties
-colorProperties
-gradientProperties
-stringProperties
-integerProperties

+setObserver(observer)
+callObserver(property)
+conatins(property)
+get(property)
+change(property, value)
#add(property, value)
#remove(property)

SVIInteractor

+switchContext(observer, property, value)

SVIObjectProperties SVISelectionProperties SVIWindowProperties

main component

sub component

interface

Figure 2.18.: Old properties implementation. For each new property implemented, all
subclasses of PropertyObserver also had to be updated.

that implemented the PropertyObserver interface had to implement a propertieChanged

method for each property data type. The big drawback was that if a new property type
should be added, all classes implementing the PropertyObserver interface had to be
modi�ed. To circumvent this drawbacks the SVIProperties class as shown in Figure 2.19
was redesigned.
Now the observer is just a SVIBasicAlgorithm and once a property changes the inform-

Observers method just calls the inputHasChanged function of the SVIBasicAlgorithm class.
So the next time this algorithm gets updated it knows that the properties input has changed
and processes an update.
To avoid the risk of in�nity recursion if an algorithm would call informObservers on its
input properties, the super class SVIBasicProperties was introduced to model a properties
class without observers. Finally, to make it easy to add new property types the template
class SVISingleTypeProperties was introduced, which handles the properties of a single
type. SVIBasicProperties then implements easy access to the di�erent property types
through overloaded methods just like in the old design.
For a complete list of all available properties see Appendix A.1.

29



2. Methods

SVISingleTypeProperties

+values
+changed

+add(property, value)
+remove(property)
+conatins(property)
+get(property)
+set(property, value)
+hasChanged(property)
+changed(property)

VALUE
PROPERTY
N
propertyNames

SVIBasicProperties

-booleanProperties
-doubleProperties
-colorProperties
-gradientProperties
-stringProperties
-integerProperties
-pointProperties

#add(property, value)
+remove(property)
+contains(property)
+get(property)
+set(property, value)
+hasChanged(property)
+changed(property)
+containsAndChanged(property)
+containsAndTrue(property)
+containsChangedTrue(property)

SVIProperties

+registerObserver(algorithm)
+unregisterObserver(algorithm)
+informObservers()
+setAndInform(property, value)

SVIBasicAlgorithm

SVIObjectProperties SVISelectionProperties SVIWindowProperties

+input

main component

sub component

interface

Figure 2.19.: New properties design making it easy to add a new property type, and make
it work nicely with the SVIBasicAlgorithms as observers.

2.4. Capabilities of the developed Matlab VTK interface

The developed interface, namely SVI, as introduced in Section 2.3, enables a developer to
easily build di�erent user interfaces. These GUIs can be build on top of the components
introduced in the Section 2.3.1. Through the Matlab interfaces SVISelectionCallback-

Processor and SVIInteractionCallback, described in Section 2.3.11 and 2.3.6, developers
can react to user actions and model di�erent visualization approaches by changing the
default way in which connected selections interact.
Chapter 3 shows three GUIs build on top of the developed Matlab VTK interface.
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This chapter will discuss the results of the software developed in this thesis. Besides
presenting the di�erent GUIs, which were build based on the developed Matlab VTK
interface, also the requirements de�ned in Chapter 1 will be discussed.

3.1. Use cases

Based on the Matlab interface described in Figure 2.1 there were several user interfaces
created within Matlab. The aim of these user interfaces was to assist a user within di�erent
tasks applicable on the datasets used within this thesis.

3.1.1. Using the interface to find groups of cells

The main intention of this Matlab VTK interface was to guide a knowledge discovery
process with in large biological data by extending Matlab with VTK’s capability of inter-
actively visualizing data [37]. Figure 3.1 shows an example GUI built with this interface.
Figure 3.1 A shows visualized full tracks. Figure 3.1 C and D show the single cells at two
di�erent developmental steps of the embryo. These two windows have a complete set of
all developmental steps, but display only one of them. A user can change the visualized
developmental step, by simply using the mouse wheel. For example, the user can scroll
through all time points, getting a visual feedback on how the embryo develops over time.
To visualize a speci�c time point, use Matlabs built-in command processor and call a
speci�c GUI function.
More information about mouse and keyboard interactions can be found in Appendix A.2.
There are already three di�erent groups of cells selected. View E shows only the full tracks
from these groups allowing to inspect them easier. View B is a Matlab scatterplot showing
in x direction the cell division rate, and the total track length in y direction. These feature
combinations could already be used to detect cell groups, which form distinct local areas
within the embryo.
To have a user-friendly interface, the groups from the scatterplot as well as from the VTK
windows are connected. These groups are modeled by SVIPolyDataSelection, which is de-
scribed in Section 2.3.10. They are also connected using the described techniques. As shown
in Figure 3.2, the Matlab plot is modeled by the SVIExampleScatterPlotProcessor class,
which implements the selection callback interface SVISelectionCallbackProcessor. So
once a user selects a group within a VTK window, the SVIExampleScatterPlotProcessor

will get called with the IDs of the selection. It can then update the scatterplot and return
the selection IDs to the C++ interface. If a user selects within the scatterplot, it then forces
a selections update, so that it gets called with the selection IDs. Afterwards it changes the
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A

C D E

B

Figure 3.1.: Finding di�erent cell groups through connected features and selections.

given selection IDs according to the user selection within the scatterplot and returns the
new IDs to C++.
The two scrollable windows mentioned above, are modeled by the SVIScrollableIDs

class. An object of this class can be con�gured for several di�erent time steps. For each
of these time steps a developer can add IDs, representing objects or selections. The
SVIScrollableIDs class also implements the SVIInteractionCallback interface, enabling
it to react to user actions like keyboard or mouse events. This makes it possible to change
the visible time step, according to the use of the mouse wheel. To show one active time step
within a VTK window, the SVIScrollableIDs class uses the properties of its SVIIDs to set
active IDs to visible and inactive IDs to invisible. Through an object of SVIScrollableIDs
the user can set a speci�c time step by calling the setTimeStep method with the desired
time step number. The SVIGroupSelection is the overall control class which puts together
the di�erent windows and the scatterplot.

3.1.2. Inspecting tracklets on a maximum projection

Another interesting case where the framework can be useful to guide a knowledge discov-
ery process, is the evaluation of full track generation. Originally, the algorithm generates
tracklets, short trajectories of moving cells. To investigate why the algorithm loses the
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SVIInteractionCallback

SVIScrollableIDsSVIGroupSelection

SVISelectionCallbackProcessor

SVIID

1..*

SVIPropertiesSVIWindow SVI

1..*

SVIExampleScatterPlotProcessor

main component

sub component

interface

Figure 3.2.: General structure of the GUI shown in Figure 3.1. The class SVIScrollable

models the scrollable views, SVIExampleScatterPlotProcessor models the
Matlab feature plot and SVIGroubSelections puts all components together.

track of a cell, the GUI shown in Figure 3.3 was created by Tomas Antritter based on the
Matlab VTK interface developed within this thesis.
Within this GUI, the user can manually select a cell on any of the three windows. The
selected cell and its depending tracklet then gets highlighted within all windows. A cell
ID can also be speci�ed using the Matlab command input window. Also, for all currently
selected cells the user can get the depending cell IDs via Matlab. By scrolling within
any window, the user can see how the cell moves along its tracklet. Unlike the previous
example where the two scrollable windows were independent, in this GUI all windows
scroll simultaneously showing the user the same developmental step of the embryo from
di�erent point of views.

3.1.3. Inspecting tracklet successors in 3D within the whole embryo

The intention of the GUI introduced in Section 3.1.2 is to create a measurement to connect
tracklets automatically in order to generate valid full tracks. However, if this measurement
reveals that it is not clear how to automatically connect a given set of tracklets, the
developed Matlab VTK interface can be used to inspect those tracklets in 3D and connect
them manually. Such a basic approach is shown in Figure 3.4.
In this GUI, the user speci�es a set of tracklets. The GUI, then automatically jumps to this
tracklets and highlights them by the use of window and object properties. For example, it
sets the camera position and focus, to let the user navigate around the end / start points of
the given tracklets. In the shown case the segmentation algorithm lost the track of the
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Figure 3.3.: inspecting one tracklet on the maximum projection.

Figure 3.4.: Inspecting three tracklets that a part of a cell division.

blue tracklet due to the fact that a cell division occurred. In this case, the user could select
both red tracklets as successors.
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3.2. So�ware testing and requirements

To validate the correct function of the software, developed within this theses, unit test
were used to test the basic components like selection processing, object connection, multi-
threading, etc [33].

3.2.1. Benchmark creation

In order to test the actual user interface manual test were used. Since the result of these
tests also depends on the input dataset, a benchmark creation software, shown in Figure
3.5, was developed. With this software, a developer could model an arti�cial embryo,
and then start a simulation which generates full tracks. These full tracks mimic some
characteristics of real biological full tracks like cell division and movement speed.

3.2.2. Original requirements

As introduced in Section 1.2.5, there already exist software tools which are capable of some
but not all requirements of this thesis (see Table 1.1). Table 3.1 shows a comparison of
these software tools with the developed Matlab VTK interface. It can be observed that the
Matlab VTK interface (SVI) ful�lls all main requirements, which will be described below.

Feature based Connected feature Matlab interface Open source
clustering plots

Fiji - - unidirectional X
CATMAID X - - X
Mov-IT - - - X
Andrienko X X - -
SVI X X X X

Table 3.1.: Comparing the requirements with other software tools for interactive clustering

Matlab compatibility
There was not only a bidirectional interface developed, also rapid prototyping within
Matlab is possible, so this target is completely ful�lled (see Section 2.3.3).

3D and 2D data representation
The GUI shown in Section 3.1.1 demonstrates that this goal was also reached.

Interactive clustering
As described in Section 3.1.1, interactive clustering is possible by selections within di�erent
views.
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A B C

D E

Figure 3.5.: Generating an arti�cial embryo to be used as a benchmark dataset. (A) Embryo
modeling out of spheres. (B) First stage of simulation. Yellow lines visualize the
distance for each trajectory between their endpoints to their desired endpoints.
The algorithm tries to minimize the distance between each trajectory end
point and its depending desired endpoint. The desired endpoints are randomly
distributed across the embryo model in order to simulate cells. (C) Second
stage of simulation. The algorithm takes into account that the trajectories
should be inside the embryo model. Since the �rst stage is faster than the
second one, the second stage is started after the �rst stage calculated a valuable
result. (D) The �nished simulation. (E) Visualization of the trajectories of the
arti�cial embryo within a 3D view of the developed Matlab VTK interface.

Connected views
To form the GUI from Section 3.1.1, the di�erent windows are connected in a way that an
update of one window also triggers all other windows to update. Also the selection shown
in Figure 3.1 are connected in a way that all windows show the same colored subsets of
the original data.

Feature based clustering
The clusters from Figure 3.1 are actually selected through the feature plot, so this important
target was also reached. However, it is only possible to connect one feature plot.
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Feature plot
It is only possible to connect one feature plot, so this target was only partially reached.
Unfortunately there still occurs an error when more then one plot is connected to a VTK
view.

Easy extensibility
The di�erent GUIs described in Section 3.1.1 - 3.1.3 demonstrate SVIs easy extensibility.
So this side goal was also reached.

Handle large datasets
While it is possible to use VTK’s full capability for 3D visualization, selection processing
within Matlab is limited. Large datasets (several million data points) can’t be handled in
reasonable time in Matlab. In this case SVIs rapid prototyping capability should be used to
generate a suitable GUI with a small dataset, and then rewrite the selection processing in
C++ to increase the speed for the larger dataset.

Controlled by Matlab
As shown in Section 3.1, it is possible to write user interfaces in Matlab code. However in
order to process large datasets it could be necessary to develop some parts in C++.
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4. Conclusion

To interactively visualize and classify large 3D time resolved datasets, an adequate data
representation is needed (e.g. a 3D view). In order to divide the dataset into speci�c regions
of interest, manual and automatic cluster generation functionality is needed.
This thesis presents a novel Matlab VTK interface to guide a knowledge discovery process
within large biological datasets. The main purpose is to interactively cluster the data
based on speci�c features like cell division rate or trajectory length and to �ne-tune those
clusters manually. A GUI builds on top of the developed interface and uses the built-in
capability of Matlab to generate visualizations (e.g. feature plots) and connects them with
fast and interactive VTK 2D/3D views. This utilizes both major advantages of Matlab and
C++, namely usability and speed. The developed approach is used to connect selections
from di�erent views, allowing a user to view and create clusters within di�erent data
representations. One of those representation is a 3D view for trajectories. In order to take
advantage of the a priori knowledge of biologists, a novel view is introduced. In this view
the tracked cells are represented along with the original microscopy image, since this is
the data representation biologists are familiar with. In this view the user can visualize
di�erent developmental steps. This makes it possible to track a cell over a de�ned time
span in an overlay visualization of cell tracks and microscopy images.
Through implementing a generic design, which makes use of callbacks for user interactions,
the developed interface can easily be used to build di�erent GUIs to ful�ll highly specialized
tasks. To quickly design and test various visualization approaches, the developed interface
supports rapid prototyping within Matlab. By utilizing C++ callbacks from Matlab this
prototypes are su�cient for small to medium dataset sizes. To process large datasets
Matlab callbacks can easily be implemented as equivalent C++ callbacks, to process heavy
tasks at the native speed of the VTK library.
To automate the process of image segmentation, tracking and interactive trajectory analysis,
it is planned to include the Matlab VTK interface into the existing XPIWIT/Gait-CAD
pipeline [4, 40]. Also the images in the superimposed views are currently maximum
projections which could be adapted to support the original 3D images. Future development
will also target user friendly packages for specialized use cases.
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A. Appendix

A.1. Properties and their standard values

A.1.1. Boolean Properties

Visible (true) Controls whether an whole object or an selection is visible.

Active (true) Control whether a speci�c selection or an object is active (if it can be
modi�ed).

RenderWhenAdded (true) Controls whether an object should directly get rendered when
added to the window.

ResetCameraWhenAdded (true) Controls whether the camera should be reset when an
object is added.

ColorByScalars (false) Controls whether the color of an object should be de�ned by its
scalars.

WindowParallelProjection (false) Controls whether the camera uses perspective or paral-
lel projection.

RenderOnPropertyChange (true) Indicates whether to render an object / window on a
property changed or not.

ResetCameraOnPropertyChange (true) Indicates that the camera should reset on a prop-
erty change.

AllSelectionIDs (false) Indicates that one wants to have point IDs when using cell selection
and vice versa.

OnCharUseIntern (true),OnKeyDownUseIntern (true),OnKeyUpUseIntern (true),OnKeyPres-
sUseIntern (true), OnKeyReleaseUseIntern (true), OnMouseMoveUseIntern (true), OnLe�But-
tonDownUseIntern (true),OnLe�ButtonUpUseIntern (true),OnMiddleButtonDownUseIntern
(true), OnMiddleButtonUpUseIntern (true), OnRightButtonDownUseIntern (true), OnRight-
ButtonUpUseIntern (true),OnMouseWheelForwardUseIntern (true),OnMouseWheelBackwar-
dUseIntern (true) Indicates that the SVIInteractor should use the speci�c events.
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UpdateSelectionOnStateChange (false) Indicates that the selection callback needs to be
updated on a collection state change.

A.1.2. Double Properties

Opacity (1.0) Value between 0 an 1 to set the objects opacity.

PointSize (5.0) Value to set the point size of an object or selection.

ScalarRangeMin (not set) The minimum value of a scalar range.

ScalarRangeMax (not set) The maximum value of a scalar range.

CameraParallelScale (1.0) Zooming factor of the camera in parallel projection mode.

A.1.3. SVIColor Properties

PlainColor (random) The color of an object or selection).

WindowBackgroundColor (light blue) The background color for a speci�c window.

A.1.4. SVIColorFunction Properties

ColorFunction (red to white to blue) The color function of an object or selection.

A.1.5. String Properties

TextureImagePath (not set) The path to a texture image.

WindowInfoText (not set) The displayed info text of a window.

A.1.6. Integer Properties

WindowSelectionMode (SelectionModeAddition) The selection mode (addition or subtrac-
tion) for a speci�c window.

SelectionModeOverride (SelectionModeWindow) The selection mode for a speci�c selec-
tion (overrides the window selection).

RenderGroup (RenderDefault) The render priority of an object or selection.

WindowWidth (800) The width of a speci�c window.

WindowHeight (600) The height of a speci�c window.

42



A.2. Build in user commands

A.1.7. SVIBasicPoint Properties

CameraPosition (not set) Camera position in a speci�c window.

CameraFocus (not set) Camera focus in a speci�c window.

CameraUpPosition (not set) Camera up position in a speci�c window.

A.2. Build in user commands

Changing the point of view By click and drag the user can move the camera around the
focal point.

Zoom in and out Zooming is possible with the mouse wheel, or by right click-hold and
moving the mouse.

Switching selection mode To switch to and from selection mode the user press the key r.
This behavior is directly supported by VTKs vtkInteractorStyleRubberBandPick. Within
the selection mode only 2D orientation is possible.

A.2.1. Build in Debug Mode

By pressing ESC the user / developer can enter an command / debug mode where he can
enter commands starting with a colon.

:reset view Resets the camera focal point and position to its initial state and also resets
the zoom to show all visible objects.

:set view X, :set view Y, :set view Z, :set view -X, :set view -Y, :set view -Z replaces the camera
so that it shows the desired direction.

:set view X UP, :set view Y UP, :setview Z UP, :set view -X UP, :set view -Y UP, :setview -Z UP
sets the cameras up position according to the typed command.

:list visible prints a list of all visible objects form the current window to the log �le.

:list objects prints a list of all objects form the current window to the log �le.
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A.3. Design patterns used within this thesis

A.3. Design patterns used within this thesis

Creator

+Product factoryMethod()

ConcreteCreator

+Product factoryMethod()

Product

ConcreteProductcreates

Figure A.2.: Factory Method design pattern. Creating specialized objects based on the call
of method instead of an object constructor (adapted from [14]).

a customer the database

1 : get orders

2 : [orders not loaded]

3 : load orders

4 : return orders

Figure A.3.: Lazy Load design pattern. The customer only loads an order the �rst time it is
needed (adapted from [13]).

Multiton

-static instances
-mutitonData

+static Instance(key)
+MultitonOperation()
+GetMutitonData()

return instance
for the given key

Figure A.4.: Multiton design pattern. Creating several distinguishable objects in a global
manner. Trying to create an object with the same key results in a reference to
existing object (adapted from [29]).
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Pipeline

-filters

+AddFilter(filter)
+process(data)

Filter

+process(data)

ConcreteFilter

+process(data)

Figure A.5.: Pipes and Filters design pattern. Creating complex objects from small and
reusable parts to form a �exible and easily adaptable system (adapted from
[6]).

Pipeline ConcreteFilter1 ConcreteFilter2

1 : process(data)
2 : process(data)

3 : process

4 : return result
5 : process(data)

6 : process

7 : return result8 : return result

Figure A.6.: A pipeline in the Pipes and Filters design pattern processes data in a linear
manner based on the order of its �lters (adapted from [6]).

Producer1

Producer2

Producer3

Consumer1

Consumer2

Consumer3

BlockingQueue

Figure A.7.: Producer Consumer design pattern. Synchronizing task creation and process-
ing across threads (adapted from [17]).

46



A.3. Design patterns used within this thesis

Singleton

-static uniqueInstance
-singletonData

+static Instance()
+SingletonOperation()
+GetSingletonData()

return
uniqueInstance

Figure A.8.: Singleton design pattern. Allows a class to have exactly one instance and
provides global access to it (adapted from [9]).

Client

Element

+accept(visitor)

ConcreteElement

+accept(visitor)

Visitor

+visit(element)

ConcreteVisitor

+visit(element)

Figure A.9.: Visitor design pattern. Separating operations on a data structure from its
implementation to make them interchangeable (adapted from [14]).

Legacy System

Legacy Class

+methdo2()
+method2()

Wrapper

+method1()
+method2()

Client

Figure A.10.: Wrapper design pattern. Making the implementation of a legacy system
accessible to another system (adapted from [9]).
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